17.3  USING THE BINOMIAL OPTION PRICING MODEL‘VALUE

A=1.0
B=-200
A=0.7787879
B =-15.646667
A=0.596667 A=0.6331658
B=-11.12667 B=-11.97
A=0.2210526
B=-3.99
A=0.0
B=00
T-3  T-2 T-1

Figure 17.6 American call.

{The equivalent

portfolios are
A=0.425556 identical to
B=-17.875556 Figure 17.6 at

dates T—-2and T—1}

T-3 T-2 T-1

Figure 17.7 European call.

Use the American call values in the numerator of Equation (17.3) when solving for the number
of shares needed to replicate American calls. Use European cail values when solving for
European deltas. Finally, use cum-dividend values of the stock in the denominator of
Equation (17.3).

Here again, remember to use the appropriate (American or European) call values in the
numerator in Equation (17.4) when solving for the amount to be invested in bonds as part of the
call replication process.

Figure 17.6 depicts the time path of the equivalent portfolio for the American call. Figure
17.7 shows that only the time T—3 equivalent portfolio is different when one is examining
European calis.

At each date, the payoffs of the equivalent portfolio are identical to the values of the call.

At time T—3 for an American call:

0.596667(22) —11.12667 = 2 = C;_, , (American)
AS+ B = 0.596667(20) - 1 1.12667/
=0.806667

= Cy_3(American) \
> 0.596667(19)—11.12667=0.21=Cr_, 4
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At time 73 for a Eurcpean call:

0.425556(22) — 7.875556 = 1.48667 = Cy_, ,, (European)
AS + B = 0.425556(20) — 7.875556 /
= 0.635556 = Cy_3(European)
0.425556(19) - 7.875556 = 0.21 = Cy_5 4

Additionally, if the stock has an uptick in the first period, then:

0.7787879(24.2) - 15.646667 = 3.2 = Cr_; ,
AS + B =0.7787879(22) — 15.646667 /
= 1.486667 = Cr_, ,
0.7787879(20.9) - 15.646667 = 0.63 = Cy_, 4y

Note that if the call is American, it is cheaper to replicate the call than it is to buy it. At time
T2, after an uptick, the American call must sell for its intrinsic value of $2 to prevent arbitrage
opportunities. Yet there will be no buyers for the call if its market price is $2. An investor can
instead buy 9.7787879 share of stock at $22/share and borrow $15.646667. The payoffs of this
levered portfolio are identical to those of the call, and'it is cheaper to buy the levered portfolio, so
why pay $2 for the call? The call owner will not find buyers for the call, and it will be rational for
him to exercise it, thereby acquiring the stock for $20, sell it for its market price of $22, and then
buy the equivalent portfolio. This point can be illustrated using an arbitrage table:

Time T'—1 (ex-dividend)

Time T—2 Stock=$23.2  Stock=$19.S
Exercise call; pay K -20
Sell stock-acquired +22
Buy 0.7787879 share Dividend +0.7787879 +0.7787879
of stock at $22/share —17.133333 Sell stock +18.067879 +15.497879
Borrcw +15.646667 Repay loan —15.646667 —15.646667
+0.513333 +3.2 +0.63

The table illustrates that if there is an uptick in the first period, the call holder will be better off at
time 7 —2 by exercising the call and then using stocks and bonds to replicate it. The payoffs at
time 7—1 are the same regardless of whether he replicates or owns the call.

The student will be asked to verify that the remaining equivalent portfolios offer the same
payoffs as the call at each date and state of the world (Problem 17.9 at the end of the chapter).

Finally, we must verify that the equivalent portfolio is self-financing at each date and state
of the world. At time 7—3 the American call replicator owns 0.596667 share of stock that sells
for $20/share and has borrowed $11.126667. If the stock has a downtick in the first period,
the new A is 0.2210526, and the new B is —3.99. The equivalent portfolio requires the sale
of (0.596667-0.2210526=) 0.3756141 share of stock at $19/share, providing proceeds of
$7.136667. This amount is exactly the amount needed to pay down the debt from $11.126667 to
$3.99. Thus the equivalent portfolio for the American call is self-financing if the stock has a
downtick. !
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Now consider the equivalent portfolio for the European call at time T—3. It consists of
0.425556 share of stock and borrowing of $7.875556. If the stock has an uptick in the first period,
the equivalent portfolio then consists of 0.7787879 share of stock that sells for $22/share and
$15.646667 in debt. The additional cash needed to buy the additional 0.3532323 share of stock at
$22/share is $7.771111. However, because the riskless interest rate is 0%, the additional borrow-
ing required to continue with the replication is ($15.646667 — $7.875556=) $7.771111. Thus the
equivalent portfolio is self-financing if the stock has an uptick in the first period.

If the stock has a downtick in the first period, the European A declines from 0.425556 to
0.2210526. The sale of 0.204503 share of stock at $19/share provides $3.885556. This equals the
decline in required borrowing from the B value of $7.875556 at time 7—3 to the B value of 3.99 at
time 7—2,

Demonstrating that the equivalent portfolio is self-financing at all subsequent dates and
outcomes is left as an exercise for the student (Problem 17.10 at the end of the chapter).

17.4 Puts

17.4.1 Simple Binomial Put Pricing

The derivation of the equations that define the single-period BOPM equivalent portfolio for & put
is similar to the one for calls explained in Section 17.2.2. To start, define the pricing process for the
underlying asset to be:

/ST,u =({+u)S;_,

ST-]
AN
Spq=(1+d)S;_,

As with calls, time T is the expiration date of a put option. If the stock rises, the put will
be worth Pr,,=max(0, K—Sr,,). If the stock declines in value at time T, the put is worth Py ;=
max(0, K—Sz,). Graphically, we have

P Pr, =max(0,K - S; ) = max(0,K — (1 +u)Sr_})
P
P ; =max(0,K — Sr ) =max(0,K -1+ d)Sr_)

The portfolio making the same payoffs at time T as the put requires an investment in A shares
of stock and B in riskless bonds (debt instruments). We will see that for a portfolio equivalent to a
put, A will always be negative or zero (in other words, A is nonpositive) and B will always be pos-
itive or zero (nonnegative). This means that a put is equivalent to a portfolio consisting of a short
position in stock and lending. We assume that the put replicator receives full use of the proceeds
from the short sale of stock.

Graphically, the equivalent portfolio follows the same process as for calls: .

S AA+ WS +(1+1)B=AS, +(1+r)B

AS;_,+B ‘
\A(l +d)Sr_ +(1+1B=AS; , +(1+r)B
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Now, equate the payoffs of the equivalent portfolio with the values of the put at time T:

Ad+u)Sy_ t(+r)B=Fr,
AQ+d)Sy_+(l+r)B=Fr,

These two equations are simultaneous equations with two unknowns, A and B. When we
achieve our goal of finding the values of these unknowns, we will have defined a levered portfolio
that always pays off the same as the put. Solving the system of simultaneous equations, we get:

- PT,u —PT,d — PT.u _PT,d i
(u—d)Sr_y  Sru—Sr4 ,

A<0 (17.20)

_ (1+u)PT'd _(1+d)PT,u .
- (u-d)1+r)

B20 (17.21)

Note that Equations (17.20) and (17.21) are identical to equations (17.1) and (17.2) except
that put values are substituted for call values and that the signs for A and B have changed. The
change in signs stems from differences in intrinsic value for the put versus the call.

The general formulation for the put A and B are:

_B-F _E-F
u-d)s  S,-S,

(17.22)

g (LR —(+dPF,
T w—-d)Y1+7r)

(17.23)

The values of A and B define the number of shares of stock to sell and the amount to lend to
replicate a put. If the put and the debt—equity portfolio both offer exactly the same payoffs at time
T, then the price of the put at time T—1 must equal the investment in the equivalent portfolio at
time 7—-1:

P =AS; +B (17.24)

Next, substitute the expressions for A [Equation (17.22)], and B [Equation (17.23)] into the
expression for the put value [Equation (17.24)]. After simpifying, we get:

[(r=dY(u— Py, +[(u—ru—-d)]Pr 4

T-17

1+r
or
P +(1—p)P, .
PR i PR Gt 2L (17.25)
1+r
where
p:r—d and 1_pzu—r
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The general BOPM equation for the value of a European put option is given by
Equation (17.26):

- pF,+(1-p)F,
1+r

(17.26)

There will be many cases in which Equation (17.26) yields a value for P that is less than
intrinsic value. This is permissible for a European put. Indeed, recall from Chapter 16 that in-the-
money European puts will frequently sell for less than K—S§.

If we are valuing an American put, the BOPM formula is:

P max[K_ S, M] (1727
1+r

In other words, if the value of (pP,+(1 — p)P;)/(1+r) is less than K—S (intrinsic value of the put),
the American put will be worth K—S. Recall that by Propositions X of Chapter 16, an American
put can never sell for less than its intrinsic value.

Whenever the American put sells for K—S before expiration, the put owner will find it ration-
al to exercise it early. By doing so, he will realize the intrinsic value of K—S and also find that he
can replicate the put’s payoffs for a cost less than K—S.

Because of the possibility of early exercise, there is no “simple” formula to value an Ameri-
can put in a multiperiod BOPM framework. You must use the single-period put BOPM to solve for
its value recursively, starting at the expiration date. In this way, you can identify the dates and sit-
uations in which the put will be exercised early.

17.4.2 A Numerical Example of Binomial Put Pricing

 each p possible ontcome at every

. & F e va >an put for f”éach possible outcome at every ¢

i jd. Fmd the composiuon of the eqmvalent portfolio for the Emnpean and?
. putforeach possible outcome at every date.

, . “,less of whether there is an uptmk or a downtick.
e £ Venfy that the equ:valent pm‘tfohos are self-ﬁnancmg

Use the recursive, smgie-penod approach computmg the necessary val fo
poss:ble outcome at every date - ;

Verify that the p&yaffs of each eqmvaient poﬁfoho is xdenucal for the put, regazd-

505




506 17 THE BINOMIAL OPTION PRICING MODEL

Solution:  First, the stock price process is:

7986
72 6/
Z N
66< 68.97
60 \62 -
\\\ Ve \
57/\ /59 565
54.15¢
™ 51.4425
T-3 T-2 T-1 T

Next, -we. compute the value of p to be (r—d)y/(u—d)=(0.02-(~0.05))/(0.1~
- (-0.05)) = 0.466667. Using Equation (17.26), recursively, we find that the values of the
European puts are as follows:

0
0
1485924 ; 0
39716 2B
6.306976 5435
N e
957549\
13 5575
T-3  T-2 T-1. T‘

Then we use Equanon (17.27) 1o find the value of the Amencan put In the followmg

‘ dlagram the outcomes in which early exercise will occur contain two values: one for the

~ value of [pP,+(1+ nFy ]/(1 +7), and, since this value is less than the put’s intrinsic value

at that date, the put’s mmnsw value at each time before 7 is presented in bold type. When

LpB, +(1~ p)P, V(1 +1) is less than K~ S, the value of the Amencan put equais its intrin-
sxc value

9 57549
10.85
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This put should be exercised immediately, at time T— 3. The put holder can axerc' ‘
the put, realizing its intrinsic value of 5 and then replicate the put’s payoffs for 4.86284,
For the European put, the composition of the eqmvalent portfoho at each date i
defined by Equations (17. 22) and (17 23) , :

A=-0.5356724
B- :3tt'>117946 f’

. A=-07875626{
 B=51.198042

T—Q

Thus, if there was an initial downtlck in'the ﬁrst penod,
S, -Sd) (2. 84183 9. 57549)!(62 7= 54 15)m~0 7875626 and B~ ,

A —-07237862/

. B=48290014 o

' \A ~09366281 e
B=60361186 \_

For example, attlme -3 A"‘(P de)/(S -S)=(1 485924——8)/(66-—5’7) ”-—0 723786 ,and
B=[(1+u)P;— (1+d)Pu]/{(u d)(l +r)} [(1 1)8 (O 95)1 48592}/’[(0 1-— (—-0 05))(1 02)}”' ‘
48.290014, ~
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 AS+B=(-0.5356724)(60) + 36.117946

17 THE BINOMIAL OPTION PRICING MODEL

. 'We now must verify that the payoffs of the equivalent portfohos equal those of the

,put For the Enropean pm at time 7—3, we have:.

(0. 5356724)(66) + (36 1179461 02)
/ = 1485927 = Fr_y,
=39776=P,_, f ;
T ' (-0.5356724)(57) +(36.117946)(1.02)
: =6 306978 = PT—Zd

Venﬁcatmn that the remammg equivalent portfolios pay off amounts iderntical to the
European puts is leﬁ as an exercise for the studcnt (Problem 17.11 at the end of the

. ,,chapter)

- For the Amencan put at time 7—2, given that there was an uptick in the first penod
we have: ‘

(—0.2870535)(72.6) +(20.431458)(1.02)

= 0.0 = PT—LBM
AS+B= 0. 2870535)(66) +20.43145

=148593=PF;_,,
(~0.2870535)(62.7) +(20. 431458)(1 02)

= 2 84183 PT—] ud

Venﬁcatlon that the remaining eqmvalent port,follos pay amounts that are 1denucal tothe

American puts is again left as an exercise for the student (Problem 17.11).

Finally, we can verify that the equivalent portfolios are self- financing. For the
European put, if there was a downtick in the first period, the equivalent portfolio at time
T =2 consists of A=-0.7875626 and B=51.198042. The required changes in the equiva-
lent ponfoho depend on whether there is an uptick or downtick at time 7 — 1: ‘

A =-05778841 Repurchase 0.2096785 share at $62 70 per share.
This costs $13.146842, The original loan of

/B =39.075163 51 158042 is worth ($51.198042)(1.02) =
$52.222003. The reduction in the required loan to
A=-07875626 $39.075163 is $13.14684,
B =51.198042 \ et
A=-10 Sell short an additional 0.2124374 share at $54.15

B=63.72549 per share. This provides $11.503485. This is also
: the increase in required lending. You originally
lend $51.198042. Now you are owed $52.222003.
The requiréd equivalent B is $63.72549.
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17.5 PORTFOLIO INSURANCE AND DYNAMIC TRADING

Dynamic trading is synonymous with option replication using equivalent portfolios. Insuring port-
folios with dynamic trading techmques has received considerable blame for the stock market
“break” of October 1987. Since the foundations of insuring via dynamic trading lie in the BOPM,
it seems appropriate to illustrate this investment technique now, and to show how it acted to accen-
tuate market momentum (on the upside and then on the downside) and may indeed have con-
tributed to the events of October 1987.

Portfolio insurance is a strategy used by traders who seek to eliminate the possibility of losses
during some interval of time. Actually, users of this sirategy can insure that portfolio returns will
not fall below a minimum target rate of return, as long as that return is less than the riskless rate of
return during the insurance horizon. For example, suppose the riskless rate of return is 10% per
year, or 33.1% over the three-year insurance horizon. The insurer can guarantee that he will do no
worse than earn a chosen return of x%, where x < 33.1%. If he wishes to avoid losses, he selects
x=0%. Depending on their strategies, other insurers might select values of x +10% (+3.228% per
year), or —14.26% (—5% per year).

If, in our example x=33.1%, the insurer would invest 100% of his portfolio’s funds in riskless
assets. Usually, x<33.1%, in which case the insurer effectively sells some of his upside profits in
exchange for truncating his minimum rate of return at x%. If the return on the underlying asset is
less than x%, the insurer will earn the minimum rate of return. If the return on the underlying
assets exceeds x%, the insurer will participate in some of the increase in value. For example, sup-
pose x=0% for the insurance horizon. Then, the insured portfolio earns 0% if the market return is
negative or zero. However, if the market rises, the insured portfolio will not profit by the full extent
of the rise. If the market were to rise by 50% over a three-year insurance horizon, an insured
portfolio might earn only 40%. Thus, the portfolio insurer pays for insurance with reduced upside
capture.

The easiest way to implement portfolio insurance is to purchase a European put on the under-
lying asset. A European put will usually be cheaper to purchase than an otherwise equivalent
American put, so the insurer will be better off buying the former, with a time to expiration equal to
his insurance horizon. Let us assume that European puts with a wide range of strike prices exist,
with times to expiration long enough to meet an insurer’s horizon, and that the insurer’s portfolio
and the underlying asset are identical. We know that deep in-the-money European puts will
frequently sell for less than intrinsic value. Thus, given the current portfolio value, there will be
some strike price for which a put will have zero time value. For now, this is the put of interest to us.
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As an example, suppose an investor wants to create a portfolio of stocks that mimics the semi-
conductor index (SOX). Let the SOX spot price S, be 810. Suppose the value of the portfolio is $5
million, and there exists a three-year European put on the SOX with a strike price of K=830 sel!-
ing for P=$20 (note that this put has no time value). The insurer must buy one pat (on 100 shares
of the SOX) for each hundred shares of the SOX purchased. Effectively, 100 shares of the
SOX costs $81,000, and one put costs $2000. With $5 million, the insurer can buy 5,000,000/
83,000=60.24 units of the SOX, where each unit covers 100 shares (i.e., 100 shares of stock and
1 put). Each put on 100 shares costs $2000, meaning that 60.24 puts v/ill cost $120,480. Thus,
$4.8 79,520 is invested in stocks, and $120,480 in puts. We ignore transactions costs and dividends
and assume the stock and puts are infinitely divisible.

If S7< 830 thr=e years hence, the puts finish in the money. Because index options are cash set-
tled at expiration, the put owner receives the in-the-money amouat in cash. For example, if
Sr =798, the put owner receives $3200 for each put (K—Sr=830-798 = 32). He sells his 60.24
shares of the SOX for $79,800 each and receives $3200 for each of the 60.24 puts. The total cash
received is $5 million if S < 830.

If S7>830, the puts expire worthless, and the insurer sells the portfolio of stocks for S;.
For example, if S =861, the cash received is 60.24 x $86,100 = $5,186,664. Note that the SOX
index rose by 6.296%, but the insured portfolio’s return was only 3.73%. The insured portfolio
did not fully participate in the market’s gains because the puts, which expired worthless, initially
cost $20.

Thus, investment in stock and the purchase of protective puts will insure a portfolio. Because
the puts are purchased at time 0, the cost of the insurance is known up front.

Instead of buying puts, an insurer can replicate the puts by dynamically trading stocks and
bonds. In other words, the insurer first invests 100% of his funds in the risky underlying asset
(stock). Then he finds the equivalent portfolio for a put with the desired strike price and time to
expiration. We know that the equivalent portfolio for a put is short stock (—1 < A < 0) and lending
(B = 0). The portfolio insurer need not sell stock short. Rather, the insurer sells the necessary stock
from his portfolio and lends the proceeds.

For example, let $=810, u=0.1259, d=-0.11, r=0.06, T=3 years, and K=830. The stock
pricing process is as follows: :

T-3 -2 T-1 T
1156.0709

\

1026.7972

N\

911.9790 913.8495

811.6613

/
810.0000 \

720.9000 722.3786

avs

641.6010

NSNS

571.0249
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The values of the European put, and the equivalent portfolios are as follows:
T-3 T-2 T-1 T

Py =0.0000
Pro1 1=0.0000
A=0.0000 -~
B=9.0000
Pr.,=T4748
A=-0.1318
B=127.7075

N
Pra=0.0000
/

Pr_3=19.9858 \PT,’ud=28.3629/

A=-0.2568 \ / A=-05621

B=228.0292 , B=484.5792 \
Py 24=56.5523 \

A=-0.6648
B=535.8019

\
PT.uddz 1076214

PT—de:141‘4179

A=-1.0000
B=783.0189

PT,ddd = 258975 1

As an exercise, verify that the equivalent portfolios pay off identical amounts to the puts and
that the equivalent portfolio is self-financing [ You should also use Equations (17.22) and (17.23)
to check the values of A and B in the above diagram. ]

Note that the put at time 7T—-3 is selling just below its intrinsic value of 20. The difference
between the put’s price and its intrinsic value will create some slight deviations from perfect port-
folio insurance in the subsequent analysis.

The dynamic trader who wishes to insure his portfolio will first invest $4,879,602 in 60.242
units of the SOX at $81,000/unit.!® Each unit has 100 shares of the SOX. Then, he will replicate
the purchase of 60.242 puts, using the equivalent portfolio at each date.

Thus, to replicate the long put position at time T— 3, the insurer must sell 0.256844 x 60.242
units of the SOX at $81,000/unit. This is because the put delta at time T—3 is —0.256844. This is
$1,253,296 of stock. He lends these proceeds and the remaining $120,398'7 of his starting wealth
to earn the riskless rate of return. Note that the amount lent, which is ($1,253,296+120,398=)
$1,373,694, equals the value of B at time 7—3 times 100 times 60.242. The portfolio equivalent
to a long stock plus long put position at time 7—-3 is $3,626,306 in stock and $1,373,694 in
riskless debt.

The same analysis proceeds at each date. The insurer will buy shares if A rises (A becomes
less negative) or sell additional shares if A declines (A becomes more negative). The required
loan at each date equals B x 100 x 60.242. The dynamic trading is self-financing, so that shares
bought are financed by a reduction in lending, and shares sold are accompanied by an
increase in lending. The time path of the equivalent portfolio for the long stock plus long put
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strategy is:

$Vr =$6,185,631(1.1259)
=3$6,964,402
$5=%6,185,631
$B=3%0
$5 =$4,769,638

$B=$769,336 $V; = $6,185,631(0.89)
= $2,141,272(1.1259)

+2,919,202(1.06)
= $5,505,212
$S =$3,626,306 $5=$2,141,272

$B=3$1,373,694 $B=%2,919,202
\ : $Vr =%4,717,062(1.06)

— $2.141,272(0.89
$5 = $1,455.750 $ (0.89)

+2,919,202(1.06)
$B=$3,227,778 / = $5,000,086
\ $S = $0.00
$B=$4,717,062
$Vy = $4,717,062(1.06)
= $5,000,086

As stated earlier, because this put sold at time 7—3 for less than its intrinsic value, some
errors would emerge. They are most obvious when the stock has either 3 or 2 downticks, and the
final portfolic value is $5,000,086. Had the put initially sold for exactly $20, perfect insurance on
the downside would have.been realized, and the terminal value of the portfolio would have been
exactly $5 million. The unobserved cost of insuring against a terminal value of $5,000,086 is
reduced upside capture if the SOX has 2 or 3 upticks.

If the market has three upticks, it will rise 42.725%. However, the insured portfolio rises only
39.288%. Similarly, the portfolio does not participate fully in the market rise if it has two upticks:
the market rise is 12.821%, but the insured portfolio rises only 10.104%. Thus, the cost of insur-
ing the portfolio is limited upside capture. Unlike the traded put (which has a one-time, up-front
insurance cost equal to the price of the put), the dynamic trading approach pays for the insurance
over time. Note also that the cost for insurance is unknown when dynamic trading is used to repli-
cate the put. If market volatility increases (higher # and a more negative d), the degree of upside
capture declines and there will also be greater risk that the final return will be less than the target
minimum return.

Just before October 1987, an estimated $80 billion in equity portfolios was insured by means
of the dynamic trading approach just described. Traded puts were inadequate for insurance pur-
poses for several reasons. First, their times to expiration were too short. Second, only American
puts traded in 1987, which meant that the insurers would have to overpay for the protection that
they wanted. Only since 1987 have European-style LEAPS begun trading, but even so, the liquid-
ity of these long-term puts has been insufficient to satisfy the needs of many large investors.
Finally, there has been, and currently is, an inadequate strike price range for the insurers. Thus, in
1987, dynamic trading was the preferred method for portfolio insurance.



17.6 OTHER REFERENCES ON THE BINOMINAL OPTION AND DYNAMIC TRADING

For the first eight months of 1987, the markct, measured by the Dow Jones Industrial Average,
rose from 1896 to 2722 (a gain of almost 44%). Because put deltas become less negative as the
market rises, insurers bought more stock as the market rose. Some observers believe that buying for
insurance purposes helped to cause the stock market to rise to an unrealistic level by August 1987.

Then, in September and early October, the DJIA declined from a peak of 2722 on August 25,
1987 to 2505 on Octcber 13. By the close of trading on October 16, the Dow had tumbled to 2247.
As the foregoing diagrams illustrate, portfolio insurers sell stocks as the market declines.- To
reestablish their replicated protective puts, insurers had to sell enormous amounts of stock -and
stock index futures.!® Accorcing to the Presidential Task Force on Market Mechanisms (1988), the
so called the Brady Report, on three days, October 14, 15, and 16, insurers sold $3.7 billion in
stock and stock index futures. On October 19 and 20, insurers sold an additional $5.2 billion and
$2.1 billion more, respectively.

With such sustained selling by dynamic portfolio insurers, is it any wonder that the technique
was blamed for exacerbating the decline? The Dow fell to 1738 on October 19, and the intraday
low of 1709 was reached on October 20.

The purpose of placing the discussion of portfolio insurance and the crash in this chapter is
the tie-in between dynamic trading and the BOPM. We close with two comments. First, there is
still disagreement about just how much dynamic portfolio insurance contributed to the October
1987 crash. Large market declines occurred worldwide in October 1987, and portfolio insurance
was nonexistent in many countries. Also, insurance-related selling on the crash days was only
about 25% of the total NYSE volume. Obviously, others also sold stock and futures on those days.
Finally, to the extent dynamic selling pressure lowered prices, other traders should have stepped
up their buying to capitalize on the resulting unrealistic low prices.

Second, note that the unexpectedly high market volatility increased the “cost” of insurance.
Shares had to be sold at prices well below those implied by the downtick returns, If a portfolio insurer
who uses dynamic replication of options seriously misestimates volatility (the « and d parameters),
the result will either be missed floors or forgone upside gains (see Rendleman and O’Brien, 1990). In
response to the unexpectedly poor performance of insured portfolios, the size of the portfolio insur-
ance industry greatly declined after October 1987. Jacobs (1999) claims that hundreds of billions
of dollars of dynamic option replication still exists and could create financial crises in the future.

17.6 OTHER REFERENCES ON THE BINOMIAL OPTION
PRICING MODEL AND DYNAMIC TRADING

The following references should be consulted for additional information about the binomial
option pricing model (BOPM): Cox, Ross, and Rubinstein (1979), Rendleman and Bartter (1979),
Rubinstein and Leland (1981), Jarrow and Rudd (1983, Chapter 13), Cox and Rubinstein (1985,
Chapters 5 and 7), Boyle (1988), and Schroder (1988).

Papers on portfolio insurance using dynamic trading techniques include Rubinstein (1985,
1988), Abken (1987), O’Brien (1988a, 1988b), and Rendleman and O’Brien (1990).

Reports by the U.S. Commodity Futures Trading Commission (1988), the U.S. Securities and
Exchange Commission (1988), and the Presidential Task Force on Market Mechanisms (1988)
contain detailed information about the October 1987 stock market crash. More crash information
is contained in Miller, Scholes, Malkiel, and Hawke (1988), Harrts (1989), Kamphius, Kormendi,
and Watson (1989), and Kleidon and Whaley (1992).
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17.7 SUMMARY

A substantial portion of this chapter was devoted to the mechanics of applying the single-period
BOPM to options. Besides ordinary European calls, we used the BOPM to value American calls
on dividend paying stocks and European and American puts. The BOPM is extremely flexible. It
can be used to value any kind of option and to incorporate possible early exercise as well as chang-
ing economic conditions (changing interest rates and changing stock volatility).

The single most important lesson to be learned is that if you know the binomial pricing
process of the underlying stock, you can replicate any option, or indeed, any strategy covered in
Chapter 15, with a portfolio of stocks and bonds. In a multiperiod world, the composition of this
portfolio changes over time, thus the replicator must buy or sell stock every period'®. However, the
equivalent portfolio is self-financing, so that any stock purchase is accompanied by an increase in
borrowing (for calls) or a decrease in lending (for puts). ,

Thus, we have an option pricing model, a method for valuing complicated options. To obtain
accurate estimates of option values, however, the time to expiration must be carved into many
intervals. The multiperiod BOPM for European calis can be cumbersome to use in this case, and
the recursive single-period BOPM method is also time-consuming, even with a computer.

In the next chapter, we make some additional assumptions and obtain the Black—Scholes
option pricing model. This model is easy to use, though at the cost of reduced flexibility.
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Notes

IThe foundations for this chapter were developed in Cox, Ross, and Rubinstein (1979, PP- 229-263). Other articles
that further developed the BOPM are listed at the end of the chapter.

2See Cox and Rubinstein (1985, Chapter 7) for applications of the BOPM to other stock pricing processes. A simi-
lar exposition by those authors is contained in Brenner (1983, Chapter 1). More advanced treatments of option
valuation when the underlying asset follows different stochastic pricing processes are in Cox and Ross (1976) and
Jarrow and Rudd (1983, Chapters 11 and 12).

30n one day, October 19, 1987, the Dow Jones Industrial Average fell 508 points, an unprecedented decline of
22.6% from the day before. Shortly after the crash, the size of stock portfolios covered by some form of insurance
declined by about 50%. Portfolio insurance using replicated protective puts did not work as well as those who used
the strategy had expected because the volatility of the market was greater than ever imagined. Still, option replica-
tion is widely employed today.
4|B} is the absolute value of B. The statement means that the amount invested in the stock must exceed or equal the
amount borrowed. This makes sense because we know that call values cannot be negative.
SNote that the formula for A may be read as the difference in call values divided by the difference in stock values.
The time to expiration can be carved into as many subperiods (months, days, minutes, etc.) as you wish. As the
length of the period shrinks toward zero, and the number of periods that make up the time to expiration increases to
infinity, it can be shown that

A=G=C _ 9C

S, =Sy as

which is the call’s delta. It measures how much the call’s value changes if the price of the undérlying asset changes
by a small amount, all else equal.
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SThis presentation can be rearranged to read C~AS=B. This says that an investor who bought a fraction of one
share of stock, denoted by A, and wrote one call, has created a riskless asset. Thus, A is frequently referred to as the
call’s hedge ratio, because A shares of stock plus one written call creates a riskiess portfolio, or a “riskless hedge.”
"One caveat must be made, however, if Cr_,>ASy_+B. If we are dealing with American calls, the arbitrageur
must be aware of the possibility of early exercise, since a call has been written as part of the arbitrage process. If the
next date is not an ex-dividend date, there is no problem. A call owner will never exercise it early, and any that are
irrationally early exercised would only mean greater profits for our arbitrageur. Nevertheless, we must be careful
about writing a cail in an attempt to arbitrage if the next day is an ex-date. This pcint will be covered in Section
17.3.3 on American calls on dividend-paying stocks.

8See Cox and Ross (1976) and Jarrow and Rudd (1983, pp. 88-95), and Jarrow and Turnbull (2000). Many authors
call p and g “martingale probabilities™.

9Recall that at any date, if the probability of a call on a non-dividend-paying stock finishing in the money is 1.0,
then A=1.0.

10Recall that O!=1.

Dividend decreases occur much less frequently than do dividend increases.

12Gince F=Se’”, you should see the analogy between a futures or forward contract and a stock paying a continuous
dividend.

3Note that the dividend amount if the stock rises is different from the amount if the stock falls. This will always be
the case in the constant dividend yield model.

14Because the American call is exercised at time T — 2 if there is an uptick in the stock’s price, the self-financing
demonstration does not apply. )

15See also note 14. If the American put will be exercised early the next period, the self-financing property does not
hold for the equivalent portfolio.

16The insurer must buy 60.242 units of the SOX and 60.242 puts with his $5 million. One protective put is needed
for each unit of the underlying stock purchased. The value of one put on 100 shares (Pr._3) is $1998.58.

"The insurer began with $5 million and invested $4,879,602 in stocks. Thus, $120,398 remained. Had the insurer
used actual puts (rather than the replication process described here), he would have used the $120,398 to buy 60.24
protective puts. .

18 Actually, most portfolio insurance is done with stock index futures, rather than the actual stock.

19The exception to this statement occurs when the call will finish out of the money with certainty (then A=0.0) or
in the money with certainty (then A=1.0).

PROBLEMS

17.1 A stock sells for $35 per share. One  equations:

year from today, it will sell for either

$36/share or $38/share. The riskless interest Sx+3y=13
rate for the next year is 10%. Demonstrate 3x+2y=9
how an arbitrage profit can be earned.

17.2 Let x and y be unknowns. Solve 17.3 In a binomial mod_el framework,
the following system of simultaneous equate the payoffs of a call with the payoffs
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of a portfolio of A shares of stock and B in
riskless debt. Algebraically solve the resulting
set of simultaneous equations to obtain the
definitions for A and B as they are given in
Equations (17.1) and (17.2).

17.4 A stock currently sells for $23/share.
At the end of a single period, it can sell for
either $19/share or $30/share. The riskless
interest rate is 5%/period. You wish to find the
value of a call with a strike price of 20. Set up
the equations that equate the end-of-period
payoffs of the call with the end-of-period
payoffs of a portfolio of x shares of stock
and y riskless bonds. The riskless bonds
have a face value (maturity value) of $I,
and they mature at the end of the period.
Solve the system of equations for x and y.
Check your answers using Equations (17.1)
and (17.2).

17.5 What is the “self-financing” require-
ment? Why is it necessary for the equiva-
lent portfolio of stocks and bonds to be
self-financing?

17.6 Use the data in Example 17.2, the
multiperiod BOPM problem of Section 17.2.7,
to find the value of a call with a strike price
of 30.

17.7 Section 17.3.1 stated that if a stock has
a constant dividend yield 9§, it does not matter
when the dividends are paid. What matters is
how many ex-dividend dates there are prior
to expiration. In the example in that section,
the stock traded ex-dividend at times 7T—4
and T-1. Prepare the stock price path if
the stock instead trades ex-dividend at times
T-3 and T-2, and verify that the time T
stock prices are the same as those in
Figure 17.3.

17.8 Section 17.3.1 presented a two-period
example of a stock paying a constant dividend

517
yield:

/30.93468
/ 28.69636 — 28.12243\

26.0876 Y, 26.71631
24.78322 — 24.28756\

23.07318

T-2 T-1 T

Assume that r=0%. If the stock has a
downtick at time T~ 1, find the composition of
the equivalent portfolio at that time. Verify that
the payoffs of that equivalent portfolio at time
T are identical to Cr.4, and Cr4,. Also verify
that the equivalent portfolio was self-financing
when moving from time T—2to T—1.

17.9 In the examples in Sections 17.3.2 and
17.3.3 (Figures 17.5 and 17.6), verify that the
equivalent portfolios have the same payoffs as
the call at each date and state of the world. Be
sure to verify this property for both upticks
and downticks.

17.10 In the example in Section 17.3.2 (Fig-
ure 17.5), verify that the equivalent portfolio
for the European call is self-financing at every
date and state of the world. In the text, this was
demonstrated for the passage of time from
time 7—3 to time 7—2 at the end of section
17.3.3. Be sure to verify this property for both
upticks and downticks.

17.11

a. Verify that all the equivalent portfolios
pay off amounts that are identical to
the puts at every date and every state of
the world, for the example given in
Section 17.4.2. Do this for both Amer-
ican and European puts.

b. Verify that the equivalent portfolios for
the European put example of Section
17.4.2. are self-financing.
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17.12 A stock currently sells for $61.20.
A call exists with a strike price of 60 and has
four months until expiration. The stock can
either rise by 2% each month or fall by 1%
each month. The riskless interest rate is 0.5%/
month. A dividend of $1.50 per share will be
paid two months hence (i.e., at time 7—2). For
each date and stato of the world:

a. Plot out the time path of possible stock
prices.

b. Recursively solve for the value of a
European call.

c. Find the composition of the equivalent
portfolio.

d. Pick one node, and verify that the pay-
offs of the equivalent portfolio are
identical to those of the call.

e. Pick one node, and verify that the
equivalent portfolio is self-financing.

17.13

a. Answer parts a—d of Problem 17.12,
for an American call.

b. Assume a risk-neutral world. What is
the probability of the stock having an
uptick and a downtick? What is the
probability that the stock will be exer-
cised early at time 7-3? Find the
probability of early exercise at each
subsequent date.

17.14 1In the context of the BOPM, discuss
how American puts are priced. In particular,
focus on the possibility and rationality of early
exercise.

17.15 In the context of the BOPM, discuss
how American calls on dividend-paying
stocks are priced. In particular, focus on the
possibility and rationality of early exercise.
When and how does exercising early
dominate the strategy of holding on to
the call?

17.16

a. Consider the problem posed as a quiz
in Section 17.1. Suppose that the data
are only part of a larger pricing process
as follows:

ST,u.': I

/ST—I,u = ——<
Sr2=_ ST,ud =30
\ ST,dd = 35

N Sp_yq =40
Assume that the stock pricing process
is stationary over time. Find the values
of ST,uu’ ST—l,u’ and ST—2°

b. Find the value of Cr_, .

c. Solve for the equivalent portfolio for
Cr_1.- In other words, set up the sys-
tem of simultaneous equations that
equate the payoffs of an unknown
equivalent portfolio to those of the call.
Solve for A and B. Use Equations (17.3)
and (17.4) to check your answer. Verify
that the payoffs of the equivalent port-
folio are identical to those of the call.

d. Use the multiperiod BOPM to find the
value of Cr_,

e. Use the single-period BOPM, and the
two possible call values at time 7—1 to
find the value of Cy_,.

f. Find the equivalent portfolio for Cr_,.
Verify that the payoffs of the equiva-
lent portfolio are 1dentical to those of
the call. Verify that the equivalent port-
folio is seif-financing.

17.17 Use the multiperiod BOPM to esti-
mate the value of a call that has four months to
expiration and a strike price of 30. The stock
sells for $35.50/share. The size of an uptick
is 10%/month, and the size of a downtick is
7%/month. The riskless interest rate is
0.583%/month.
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1718
89.06525
44.06525
79.3525
3472735\
7069895 70.70308
26.44396 2570308
62.98009 - 62.99277"
915458 \ 18.36441
56.12 56.12328 56.12656
3.25259\ 11.97441 11.12656
50 50.00292 50.00584
29979999 \\ 7.400553 5.597999
44.55 44.55260 44.55520
4.415654\ 2816467 0
39.69405" 39.69637

1.417021\\ / 0 \

35.3674
0

T-5 T-4 T-3 T-2

The accompanying tree diagram is for a stock
following a binomial pricing process. The risk-
free interest rate is 0.84% per period. The
upper number in each “box” is the stock price.
The lower number is the price of a call. Time T
is the expiration date of the call.

a. Compute the value of the call at time
T-5.
b. Suppose the stock has had two upticks,
so the stock sells for $62.98909 at time
T-3. Find the composition of the ,
equivalent portfolio of stocks and 17.19

35.36946
\ 0
31.51235
o\

28.0775
0

T-1 T
or a downtick at time T -2, the payoffs

of the equivalent portfolio and the call
are the same.

. Now, suppose time T is an ex-dividend

date, and the dividend amount is $6 per
share. Suppose the stock is selling for
$62.99277 at time T7-1. The ex-divi-
dend prices at time 7 will be either
$64.70308 or $50.12656. Will an
American call be exercised early at
time 7-1? Why or why not?

Today’s stock price is $100. At the end

bonds at that “node.” Then verify that of the upcoming single period, the stock will
regardless of whether there is an uptick  sell, ex-dividend, for either $140 or $65. The
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dividend amount is $10. The riskless interest
rate for the single period is 10%.

a. Find the theoretical value of an Ameri-
can call with a strike price of 90; the call
expires at the end of the single period.

b. If the market price of the call at time
T-1 is actually $12, then clearly and
thoroughly demonstrate how an arbi-
trage profit could be earned, given
your answer to part a.

17.20 The diagram shows some data as part
of a lengthy binomial process. The riskless
interest rate is 1% per period.

a. Verify that the payoffs of the call at
time T—66 are the same as the payoffs
of the equivalent portfolio.

1

:Q =CIJ
I

44
8 7
0.85 \

>
it

u

/
S =40 /
C = 5.54455
A =0.6667 \
B=-21.122112 \
S; =38 /

// Ci=4 N\

T-67 T-66 T-65

b. Compute B, at time 7T -66, when
S,=44. (Hint: the equivalent portfolio
is self financing).



CHAPTER 18

Continuous Time Option Pricing
Models

The binomial option pricing model (BOPM), produces reasonably accurate option values if the
user has accurate beliefs about the values of u and d. Also, the BOPM is extremely flexible. For
example, the BOPM can be used to value both European and American puts and calls, either with
or without dividend payments. The possibility of early exercise can be accounted for in each
period, and the values of u, d, and r can change over time. The primary drawback of the BOPM is
that a computer must be used to estimate option values when the time to maturity is carved into
many small periods.

18.1 THE BLACK—SCHOLES OPTION PRICING MODEL

Under certain assumptions and when time to maturity is carved into an infinite number of subin-
tervals, the BOPM will converge to the option pricing model attributed to Fischer Black and
Myron Scholes. The Black-Scholes call option pricing model (henceforth, the BSOPM) provides
an explicit solution to the problem of option pricing.! By “explicit,” we mean that an equation is
obtained.

Although the BSOPM is relatively simple to use, it is important to be aware that the model
can accurately value only European options, or American calls on non-dividend-paying stocks.
As the possibility of early exercise becomes more likely, the BSOPM produces increasingly inac-
curate values. Moreover, an important assumption of the BSOPM is that the wanderings of
the stock price through time follow one particular type of pricing process, which cannot change
over time.

In this chapter, we first present a set of sufficient assumptions that will lead to the derivation
of the BSOPM. Then, the model itself is stated, and a numerical example is shown in detail. Fol-
lowing that, we examine a few details concerning the assumed stochastic process guiding the value
of the underlying asset. It is important to realize that a model generally will produce useful results
only if the assumptions behind it are realistic. If the assumptions are violated in the real world, the
model will frequently provide poor predictions.

18.1.1 Assumptions Behind the Black-Scholes Option Pricing
Model

Although other sets of assumptions have been used to derive the BSOPM, the following assump-
tion list is sufficient.
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1. Capital markets are perfect. That is, there are no transactions costs or taxes. There are no
short selling constraints, and investors get full use of the proceeds from short sales. All
assets are infinitely divisible.

2. All investors can borrow and lend at the same riskless interest rate, which is constant over
the life of the option.?

3. The stock pays no dividends. This means that the model can value European or American
calls, since the latter will be exercised only at the expiration date, if and only if the call fin-
ishes in the money.

. Markets are always open, and trading is continuous.

5. The wanderings of the stock price through time follow the rules of a specific type of sto-

chastic process called a geometric Brownian motion. This pricing process is discussed in
the chapter appendix.

~

18.1.2 A Quick Discussion of the Importance of Lognormal
Returns

If the stock price follows a geometric Brownian motion, then the distribution of the stock’s returns
will be lognormally distributed.?> The chapter appendix contains additional material on Brownian
motion and returns distributions.

Lognormal returns are realistic for two reasons. First, if returns are lognormally distributed,
the lowest possible return in any period is ~100%. In contrast, if returns are normally distributed,
there is some probability that returns will be less than—100%. Second, lognormal returns distribu-
tions are “positively skewed,” that is, skewed to the right. This is realistic because while the low-
est return in any period is —100%, the highest return will likely be in excess of 100%, particularly
when measured over a year. Thus, a realistic depiction of a stock’s returns distribution would have
a minimum return of —100% and a maximum return well beyond +100%. The longer the time
interval under consideration, the more valid the latter statement becomes. Therefore, annual returns
will be more positively skewed than monthly returns, and monthly returns will be more skewed than
daily returns. Returns distributions will not be symmetric. They will be skewed to the right.

18.1.3 The Variance of the Stock’s Return Is Proportional
to Time

Two comments must be made about the implications of this lognormal distribution assumption.
First, although the price of the underlying asset (such as a stock) may be a function of its expected
rate of return, the value of an option predicted by the BSOPM is independent of the expected
return. In other words, all else equal, the value of an option on a stock that has a high expected rate
of return is the same as the value of an option on an otherwise equivalent stock with a low expected
rate of return.

Second, if the stock price follows a geometric Brownian motion process, the variance of the
stock’s returns is proportional to time. Correspondingly, the standard deviation of the stock’s
returns is proportional to the square root of time. Thus, define a subscript, /, to denote a long
period of time, and define another subscript, s, to denote a short period of time. Then,

0,2 = (ijof (18.1)
R
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EXAMPLE 18.1 Ifs=1 day and /=1 week, then -

2 — 2
Gweek!y =(No, daily.

This means that the variance of weekly returns is seven times greater than the vari-
ance of daily returns. If s=1 month and /=1 year, the variance of yearly returns 1s 12
times thevariance of monthly returns: o

ayemy = (IZ)Gmmﬂﬂy

The corresponding relationship for standard deviations is:

G,QJZU; i
8 (18 2)

The standard deviation of a stock’s returns is propomonal to the square root of ume
For example, if s=1 week, and =1 year, then

,,w,y«/’“ O eekly ~72111¢wwk,y

This says that if the stock follows ‘the stochastic pncing process that has been
described, the standard deviation of a stock’s yearly returns dnsmbutmn wﬂl be 7 2111
times the standard deviation of its weekly returns distribution. -~

where &7 is the variance of the stock’s returns measured over the longer interval of time, 0'3 is the
variance of the stock’s returns measured over the shorter period of time, and //s is the number of
short intervals in a long interval.

Perhaps an analogy will help make this important concept clear. Consider a person who starts
to stagger along a straight line. Place him at point zero. After one day, he will have staggered back
and forth, but will likely not have strayed too far from point zero. After one month, he may have
wandered much further from point zero. After a year, he may be miles from it.

A stock’s price behaves like this person. If today’s stock price is $100/share, and it follows the
pricing process described, then after one day has passed, it may be priced between $98 and $103
per share. After one month, it may sell between $90 and $115 per share. One year hence, it may
sell for as low as $60 and as high as $160. The variance of the returns distribution grows larger as
longer time intervals are considered. The variance of the annual returns distribution should be 365
times as great as the variance of the daily returns distribution. Figure 18.1 depicts the nature of the
returns distributions as longer time intervals are considered.

18.2 THE BLACK-SCHOLES OPTION PRICING MODEL AND
A DETAILED NUMERICAL EXAMPLE

Under the preceding assumptions, the value of a European call, or an American call on a non-di{/idend-
paying stock, is as follows:*

C=SN(d,) - Ke™ T N(d,) (18.3)
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Figure 18.1 Probability distributions of returns. (a) Daily, (b) monthly, and (c¢) annual. Each return
distribution is lognormal.

where

S=price of the underlying asset
K=strike price of the call option
r=risk-free interest rate
T=time to expiration
N(d) =the cumulative standard normal distribution function’

g = In(S/K)+ (r +62/12)T
: ovJT
dy =d,—oNT

o =standard deviation of the underlying asset’s returns

In(S/K ) =natural logarithm of S/K
¢ "T=exponential function of —rT. Thus, e " is the present value factor when r is continuously
compounded for time period 7. The present value of K, therefore, is Ke™ T

An important aspect of the BSOPM is that both r and ¢ are assumed to be known and
constant. In the BSOPM, r is generally stated as an annual interest rate; T, the time to expiration,
is stated in years, and o should be defined as the standard deviation of the stock’s annual returns.
However, any consistent interval of time can be used. For example, you may wish to define r as the
monthly riskless interest rate, T as the number of months until expiration, and ¢ as the standard
deviation of the stock’s monthly returns.

For the value of r, some users employ the bond equivalent yield® on Treasury bills that mature
near the option’s expiration date. Other users believe that a more realistic rate is the Eurodollar
interest rate, which incorporates a small default risk premium. For valuing options that expire
more than one year in the future, r is typically the yield on the zero-coupon Treasury strip that
matures on a date near the option’s expiration date.

You might be surprised to see that the expected return on the stock does not appear in the for-
mula. The value of an option is independent of the expected return of the stock.” However, the
volatility of the stock returns, &, is an important determinant of an option’s value. In addition, ois
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the only determinant of the call option value that is not directly observable. Users of the BSOPM
must estimate 0, just as users of the BOPM had to estimate values for u and d.

Finally, note that there are no variables in the BSOPM that reflect the level of risk aversion in the
economy. Under the stated assumptions, option values are invariant to investors’ attitudes to risk.
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EXAMPLE 18.2 Example of the BSOPM A stock is currently sellmg for 58.875. The

riskless interest rate is 8% per year. Estimate the value of a call with a strike price of 60

and a time to expiration of three months. The standard deviation of the stock’s annual

. retums is 0.22. Thus, §=58.875, K=60, T=0.25 year, r=0.08/year, 0 =0. 22/year, and
6%=0.0484. To find the Black--Scholes call option price, first calculate:

111(S/K) +(r+ 0% 2T _ In(58.875/60) + (0.08 +0.0484/2)0.25
m/‘ o 0;o3s

'd,

ln(O 98125) + 0, 02605 —G 018928 +0.02605
o205 o

=0.064745

d, -;d, 0’1/_ =0.064745 - 0.22+/0.25 = 0.064745 — 0.11 = —0.045255

: Next values for N(d,) and N(d,) are needed, and they are found by using the cumulative
- standard normal distribution function table found in the appendix to this c:hapter8

N(dl) 0.525812

NG ) 0481952
| ‘The dxscounted stnke pnce is ngen by: -
sl o Ke T 6oe“‘°“3><°”’ = (60)e™*” = (60)(0 9802) 58.81192
G Fmany recall that the stock pnce is 58 875. Therefore the call option price is:
v C SN(dl) Ke"'TN(dz) - 58.875(0. 525812) 58.81192(0.481952) = 2. 6127

| ~ This is the theoretical value of this call, and its accuracy depends crltlcally on the
estimate of ¢. Later in this chapter, methods for estimating o will be presented.

FinCAD provides the same solution, as shown in Figure 18.2. To generate the same
solution for the call value, it is necessary to enter the value date as “today()” and the exp1- o

ration (expiry) date as “today()+(365/4).” In addition, the annually compounded interest

- rate is exp(0.08)—1=8.3287068%. The meaning of the Greeks (delta, gamma, theta

vega, and rho) will be explained in the next chapter.
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Underlying price 58.875

Exercise price 60

Expiry date 24-Jun-98 =TODAY()+(365/4)
Value (settlement) date 3/25/98 =TODAY()
Volatility 0.22

Risk free interest rate 0.083287068 = exp(0.08)-1
Option type 1|Call

Statistic 1|fair value

Discounting method 1|annually compounded rate
Accrual method 1jactual/ 365 (fixed)

Fair value 2.612634856 1
Delta 0.5258117 z
Gamma 0.061471836 3
Theta -0.020339844 4
Vega 11.71927424 5
Rho 6.541324504 6

Figure 18.2 The FinCAD function aaBS can be used to determine Black—-Scholes prices for call and put
options.

18.3 AN INTUITIVE LOOK AT THE BLACK—SCHOLES OPTION
PriCING MIODEL

By assuming a world of certainty, we can gain an insightful view of the structure of the BSOPM.
In such a world, all assets, including stock and all options, must be priced to yield the same risk-
less rate of return. If any asset was priced to yield more (and in a certain world, everyone would
know this), then many investors would rush to buy the asset until its price rose enough to provide
the same riskless return as all other assets. If any asset was priced so that its known rate of return
was less, no investor would buy it, and its price would decline.

In a certain world, if investors knew that a call was going to finish out of the money, S7< K,
then the price of the call at every date would always be zero. On the other hand, suppose that
investors know that a call will finish in the money. At expiration, everyone knows that Cr will sell
for its intrinsic value, S;— K. Because the call must be priced to yield the riskless return, today’s
price will equal the present value of Cy. In other words, Co=1Sr—K1(+ r)‘T, given that S7> K.
The discount rate, r, is the riskless interest rate.

In addition, the stock must also be priced to yield a riskless rate of return, r. Thus

So =Sp(1+ r)_T. This is equivalent to saying that Sy =S,(1+ r)T . Substitute this into today’s
call value, and

Cy =[S+ - Ki1+n)"
or

Co=S,-K+nT"
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Compare this value of a call with the BSOPM. To convert the call value just given to the
Black~Scholes call value, simply multiply Sy by N(d,) and multiply K(1+r)~" by N(d,). Smith
(1976, footnotes 20 and 22), and Jarrow and Rudd (1983, pp. 93-94) point out an interesting fea-
ture of the Black—Scholes model. They explain that if the Black—Scholes model is the correct
option pricing model to use, the term N(d>) is the probability that the call will finish in the money
in a risk-neutral world.®

18.4 THE BLACK—SCHOLES OPTION PRICING MODEL AND
EurOPEAN PuT PRICES

One easy approach to estimate the value of a European put on a non-dividend-paying stock starts
by calculating a call option price using the basic BSOPM. Then, a put value is obtained by using
the basic put—call parity theorem. For example, in Section 18.2 we computed the theoretical value
of a call with the following inputs:

S5=58.875
K=60
T=0.25 year
r=0.08
0=0.22

Using the BSOPM, we found that the value of a European call is $2.6127.
The basic put—call parity theorem is Proposition XI in Chapter 16:

C-P=S-K(1+r) "
If interest is compounded continuously, put—call parity can be restated as follows:
C-P=S-Ke'" (18.4)
Rearranging, and solving for P:

P=C-S+Ke " =2.6127-58.875+ 60e 08025 — g3 5496

Alternatively, the BSOPM formula can be restated to value European puts on non-dividend-
paying stocks by using the continuous time version of the put—call parity theorem. That is, we start
with the BSOPM

C=SN(d)) - Ke """ N(d,)
and rearrange the put—call parity proposition to be
C=P+S-Ke" (18.5)
This yields, after substituting Equation (18.5) into the BSOPM,

SN(d)) - Ke """ N(dy)=P+S-Ke T (18.6)
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Solving Equation (18.6) for P results in
P= SN(d,)-S+Ke"T —Ke " N(d,)
or

P=S[N(dl)—1]—Ke_rT[N(d2)—1] (18.7)

Note that in Equation (18.7), the terms [N(d,)—1] and [N(d,)—1] are negative because the
area under the normal density function has a maximum of 1. Thus, Equation (18.7) can be restated
as follows:

P=KeT[1- N(d,)]- S [1- N(d,)]

In addition, because of the symmetry of the normal density function, that is, because
[1- N(d)] = N(—d), the put price can also be expressed as follows:

P=Ke " N(-dy) - SN(~d,) (18.8)

Now, let’s use Equation (18.8) to value the put directly. Recall that in Example 18.2 we found
that d,=0.064745 and N(d,)=0.525812. Therefore, 1 -N(d,)=N(-d,)=0.474188. Furthermore,
since d,=-0.04525 and N(d,)=0.481952, we have 1-N(d5)=N(-d,)=0.518048. The value of
the put equals:

P=Ke""N(~dy)~ S N(~d,) = (58.81192 x 0.518048) — (58.875 x 0.474188) = 2.5496

Note that this is the same value that we estimated by using the BSOPM call formula along with the
put—call parity proposition. Intuitively, this makes sense because the put—call parity proposition
was used to derive Equation (18.8).

18.5 Two HANDY EXTENSIONS OF THE BLACK—SCHOLES
OpTION PRICING MODEL

As you know, the BSOPM is designed to provide prices for European options on a security that
does not pay dividends. Financial economists have modified and extended the BSOPM to allow its
use to value options on securities of other types. We now turn our attention to an examination of
two extensions to the BSOPM. These two variants of the BSOPM value European calls on stocks
that will trade ex-dividend before the expiration date. Note that these two variants could also be
used to value American calls if the user is highly confident that the call will not be exercised before
expiration.

18.5.1 Variant One: The Black-Scholes Option Pricing Model on
Securities Paying Known, Discrete Dividends

If the stock will trade ex-dividend before expiration, then the holder of a European call owns an
option only on the stock price at expiration because he has no claim on dividends before the
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expiration date. The stock’s theoretical value at expiration is the present value of all dividends after
the expiration date. However, today’s stock price is the present value of all dividends after today.
Thus, the difference between the stock price today and the stock price at expiration is the present
value of dividends received between tomorrow and the option expiration date. Therefore, a Euro-
pean call option on a dividend paying stock is really a call option on an asset price adjusted for the
present value of all dividends received after today and prior to expiration.

To use this variant of the BSOPM, define

N
§" =S-PV(divs)= § - z div,(1+r)7"
i=1

That is, §” is today’s stock price minus the present value of all dividends received after today and
prior to the option expiration date. In this notation, div; is the dividend amount at time ¢;, and T is
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EXAMPLE 18.3 Given the following information, what is the value of a European call
option?
S=44
K=40
r=0.08/year
T=67 days
o=0.30/year

A dividend of $1.10 will be paid 39 days from today, i.e., in 0.10685 of 2 year.
S" =44 - 1.10¢700%010685) _ 44 _1.091=42.909
_ In(S*/K)+(r+ 62 1)T _ 1n(42.909/40) +[0.08 +1/2(0.09)]0.184

d
! oJT 0.340.184
_ In(1.0727)+0.023 _ 0.07018+0.023

« = =0.7247
(0.3)(0.42844) 0.1285 .
N(d,)=0.7658 e
dy =d, - 6T =0.725~0.304/0.184 = 0.7247 - 0.1285 = 0.5962
‘ N(d,)=0.7245 ' s

Ke™™T = 40¢™OONOIB) _ 4050.9854 = 30,4160
Theréfore, o ; : e
C=S"N(d))- Ke " N(d;) = (42.909 0.7658) - (39.4169 X 0.7245) = 4299

The FinCAD function aaBSdcf computes the same result, as shown in Figure 18.3. ‘
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AaBSdcf ' o :

Underlying price 44
Exercise price 40
expiry date 15-May-98
value (settlement) date 9-Mar-98
Volatility 0.3
rate curve t_48_1
accrual method 1|actual/ 365 (fixed)
option type 1|Call
Statistic 1{fair value
Discounting method 2|continuously compounded rate
Dividend payment table .14
t_48_1
holding cost curve
Maturity date yield to maturity
9-Apr-98 0.08
9-May-98 0.08
9-Jun-98 0.08
t_14

Dividend payment table
all the dividend dates from the value Dividend amount
date to the expiry date

17-Apr-98 | 1.1]

fair value 4.298630947

Figure 18.3 Using the FinCAD function aaBSdcf to compute option valuation when the underlying asset
pays a discrete dividend.

the expiration date. Here, it is assumed that the ex-dividend day and the payment day are the same,
that the dividends are known with certainty, and that the stock price will decline by the dividend
amount on the ex-day. Thus, to value a European call option on a dividend-paying stock, merely
use §” in place of S in the standard BSOPM. 0

18.5.2 Variant Two: The Black-Scholes Option Pricing Model on
Securities Paying a Continuous Dividend Stream

Although individual stocks do not pay dividends continuously, a continuous dividend flow model
can be used to approximate the dividend stream paid by a well-diversified stock portfolio. The
approximation model is particularly inviting if the option has a long time to expiration. However,
if the call has a short time to expiration, this model is less adequate. This is because many stocks
in the portfolio will trade ex-dividend on the same date during the option’s remaining life. At other
dates, however, no stock in the portfolio will trade ex-dividend.
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This continuous dividend flow model is also valid when one is valuing European calls on
futures contracts, on foreign exchange, or on a pure discount debt instrument such as a T-bill.
Interest accrues on the T-bill daily, a process that is analogous to a continuous dividend stream.

To use the continuous dividend model, define

S* — _Se_dT

where d is the annual constant dividend yield and T is the time to option expiration, in years. Thus,
if a stock index is currently at S=156, the dividend yield is 4%, and the call has nine months to
expiration, then

§* =156~ (000075 151 3805

Therefore, to value a European call on a stock that pays a constant dividend yield, one would
simply substitute the value of S” for § in the BSOPM.

The FinancialCAD function aaBSG computes the value of a European option on an asset
paying a continuous dividend (called a “holding cost” on the FinCAD example).

18.5.3 European Puts with Known Dividends

To value a European put on a stock that will pay known dividends, you can first use the method
explained in Section 18.5.1 to value a European call on a dividend-paying stock. Then, you could use
the version of put—call parity that applies to European options on stocks that pay known dividends.!!
Alternatively, define S” as the current stock price minus the present value of all dividends between
today and expiration. Then, substitute S~ into the BSOPM put pricing model, Equation (18.8).

The FinCAD functions described earlier typically have an “option switch” button that toggles
between a call and a put. For example, aaBS has such a switch on line 8, and aaBINdcf has it on
line 10.

18.6 THE RELATION BETWEEN THE BINOMIAL AND THE
BLACK-ScHOLES OPTION PRICING MODELS

Under certain conditions, the BOPM will converge to the BSOPM. Let the number of intervals in
the BOPM become infinitely large. The length of each time interval in the BOPM thus shrinks to
approach zero. Then, we must choose specific values of u, d, and g (the probability of an “uptick™).
These values will result in the stock following a geometric Brownian motion. Thus, let the follow-
ing define u, d, and g:

M=€o- T/n__]

—oyT/in
d:eo n_l

q=l+l(ﬁj T
2 2\oc/\n

where T is the time to expiration and # is the number of subintervals in 7. The parameters L and ¢
define the expected return on the stock and the standard deviation of the stock’s return distribution,
respectively. If u, d, and g take on these specific values, it can be shown that as n = e, the stock
price will be lognormally distributed, and the BSOPM will result.
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EXAMPLE 18.4 Suppose T=4 months=0.3333 year, and n=4. If the stock’s standard
deviation of annual returns is 0.60 and the expected return is 0.20 per year, then choosing
the following will make the BOPM and BSOPM mutually consistent:

u= eo Tin _ 1= e(0.60)~d().0833 1= e0.1732051 ~1=0.18911

d= e—cﬁ/’i 1= (060100833 _y 8-0.173205] —1=-0.159035

1 1(p)[T _1 1(020)
= —t— —= 0. 833
a (G) — =+ | o5 V008333 = 0.5481125

If u, d, and g are defined in this way, the stock price will become lognormally distributed
as i = 00,12

Sometimes, you may wish to use the BOPM, when you are uncertain of the choice of « and d.
If you have estimates of the required return on the stock and the volatility of the stock’s returns,
these formulas can be used to obtain reasonable estimates for u and d. The value of ¢ in the BOPM
is only important when you are not assuming a risk-neutral world.

18.7 THE NETTLESOME TASK OF ESTIMATING A SECURITY'S
VOLATILITY, o

18.7.1 Historical Volatility

The estimate of a call option value made by using the BSOPM is only as good as the estimate of
o that is used in the formula. No one knows what the standard deviation of stock returns will be
during the life of the option. Thus, it must be estimated. One way to estimate future volatility is to
use historical price data To do this, follow this easy procedure.

1. Decide on the length of the interval for which you will use historical prices. You may wish
to select daily, weekly, or monthly prices. Also record any ex-dividend days and any ex-stock dis-
tribution days during the estimation period.

2. How many price observations should you gather? There is a trade-off between obtaining
too many and too few observations. Assuming no major changes in the company, an estimate of
the standard deviation will be more reliable (efficient) as more observations are used. However, as
you move further back in time to obtain price data, there will be an increasing likelihood that the
risk of the company’s stock was different from what it is today. Thus, perhaps a good compromise
is to use about 60-200 daily price observations, 40-60 weekiy price observations, or 30-50
monthly price observations.

3. Compute the continuously compounded rate of return for each interval. That is, compute
daily, weekly, or monthly log price relatives. To do this, find

T = 1“{%}
t
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or, if there was an ex-dividend day during the interval,

ry = ln{ S +d1vj}

tl

where div is the dividend amount. You must also adjust these returns for any stock dividends
or stock splits.!3
4. Compute the average of the time series of the n.returns, 7:

n

(35

t=1

L
where n is the number of log price relatives you have.
5. Estimate the variance of the stock’s returns:

()N
V”(’)‘(n_l)g(" & (18.9)

Finally, use Equations (18.1) or (18.2) to obtain an estimate of the variance or standard devi-
ation of the stock’s returns for any desired interval of time. For example, if you used daily log price
relatives, you can estimate the variance of the stock’s annual returns by multiplying the variance of
daily returns by 365.
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VmamafaStock sMomth Returns

EXAMPLE 185 Estimating.

0 1050000 0048790 0041735  0.001742

) 0979166  -0.021050  -0.028100. - - 0.000790
1030395 0029942 0022887 . 0000524 '
0938053  -0.063940  -0.071000 0005042
1.006289 0006269  —0.000790  0.000001
1.025000  0.024692 0017638 0.000311
1025000 0024692 0017638 = 0.000311

N ST R O R R
w .
-~
W
e = -

7

F=000705 Y =0008720

t=l

| a?=(fg) ) (7~ 7)° =0.001453
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Thus, the estimated variance of the stock’s monthly returns is 0.001453. The variance of the
stock’s annual returns is 12 times as great: 0.017436. As stated earlier in practice, you would use
between 30 and 50 observations to obtain a good estimate of the stock’s monthly volatility.

Historical volatility estimates for CBOE-traded options are available at the board’s website
(www.cboe.com/MktData/Historical Volatility.asp).

18.7.2 Improving on the Estimate from Historical Data

The series of closing prices is not the only kind of data that can be used to estimate stock return
volatility. For example, you can utilize the information in the stock’s ending price, as well as its
high, low, and beginning price that occur during the interval.4

You can also estimate the historical variances of the stocks of other companies that are in sim-
ilar businesses and have similar capital structures to compare the stock’s historical volatility to that
of these firms. If there are significant differences, you may wish to adjust your estimated volatility
to be closer to the other firms. Similarly, firm-specific information such as capital structure, lig-
uidity, and fixed versus variable operating costs might aid in estimating a stock’s variance. If any
of these last data are used, you should generally make only small adjustments to your initial esti-
mated volatility obtained from historical data.

18.7.3 Implied Volatility (IV)

Up until now, you have placed an estimated variance into the BSOPM to obtain an estimated call
value. However, it is also possible to take the market price of the call as given and “back out” a
variance (or standard deviation) that is consistent with that option price. This variance is called an
option’s implied variance (implied standard deviation), or, more commonly, implied volatility,
VOL, or IV.

The primary advantage of an implied standard deviation over a historical volatility is that an
implied .standard deviation represents an ex-ante market assessment of risk. For this reason,
option-implied forecasts of return volatility have frequently been regarded as superior to estimates
based on historical data. Generally, a computer is used to perform a trial-and-crror routine to
search for the unique o that provides a model price equal to the observed price.!’

FinCAD has functions that allow implied volatility to be calculated for options of many dif-
ferent types. For example, the FinCAD function aaBS_iv can be used to compute the implied
volatility of a European call or put option. Figure 18.4 illustrates how the implied volatility for
Example 18.6 is computed.

6 On Febmary 19 1998 the S&P 500 Index closed at 1028.28. The
,s thh smk:e price of 1030 had a closing price of 20 The short-term
55.25 opt;oa had 28 days untxl expiration.

ef 16 23% is consistent with this option price, as shown
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aaBS iv

Underiying price 1028.28

Exercise price 1030

Expiry date 20-Mar-93

Value (settlement) date 19-Feb-98

Price 20

Risk free interest rate 0.0525

Option type 1|call

Discounting method 1/annually compounded rate
accrual method 1]Actual/365 (fixed)

implied volatility 0.162318349

Figure 18.4 The FinCAD function aaBS_iv can be used to determine the implied volatility of a call option.

If you use yesterday’s option price data to obtain an IV to use in valuing options today, an obvious
question is: Which option price should be used? There have been several techniques suggested for
making the best use of information contained in a set of implied volatilities. Despite the widespread
use of implied volatility, there is no generally accepted method to estimate implied volatility.!6

18.7.4 Using Implied Volatility Estimates

Finding the implied volatilities of options is useful for determining which option is the most
undervalued or the most overvalued. Relative to the other options on the same stock, the option
with the lowest IV is most undervalued. This statement assumes that the assumptions behind the
BSOPM are valid. However, there could be good reasons for one option to have a higher or lower
IV than another option. For example, the stock’s volatility might be expected to change over time,
causing calls with longer times to expiration and calls with shorter times to expiration to have dif-
ferent IVs. In addition, there could be a perceived probability of a jump (a discontinuity) in the
stock price, which would cause calls with different strikes to differ in their [Vs. Ex-dividend dates
can cause IVs to differ across options’ times to expiration. Finally, refer to Section 18.7.6, which
discusses the “volatility smile.”

Computing an IV that is drastically different from one you believe ought to be incorporated in
an option’s price is tantamount to holding the belief that the option is mispriced. Suppose you cal-
culate an IV for a call to be 30% (based on its asked price). However, you believe that the true
volatility is 60%. In other words, you believe the call is undervalued. You could just buy the call.
On average, if your beliefs are correct, you should earn an above-average rate of return for the
risks you bear.

Alternatively, you can try to arbitrage by purchasing the undervalued call and selling the
equivalent portfolio of stock and T-bills. The proportions allocated to stock and T-bills in the latter
portfolio should reflect the estimated volatility of 60%. The equivalent portfolio must be revised
frequently over time, to reflect changes in the required proportions that are needed to replicate the
call. If your beliefs about volatility are correct, you should end up with a profit equal to the differ-
ence between the value of the call with a volatility of 30% (its actual price), and the value of the
call if it were selling with a volatility of 60%.
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Merville and Pieptea (1989), analyzed the time series properties of the I'Vs of 25 stocks. They
disclosed at least two interesting findings: changes in IV are correlated across stocks; and there
appear to be one or more forces that pull IVs back to their long-term average values (this is called
mean reversion). These findings imply that the IV of one stock provides information about the IV
of another stock. In addition, if a recent IV is considerably different from its long-run average I'V
(perhaps calculated over the past year), then a “better” estimated volatility might be a weighted
average of the recent IV and its long-term mean.

Many traders use the mean reverting property of implied volatility to improve their trading
performance. For example, suppose a bullish trader believes that a certain stock price is about
to rise. If the current IV is below its long-term average value, the trader will buy calls. As such, he
is effectively buying the underlying asset and buying volatility. Note that the trader might be
wrong and the price of the underlying asset might rnot rise substantially, but he can still profit. If
the IV of the option does increase, the trader will benefit, because all else equal, the call price will
increase as its IV increases.

If the IV is above its long-term average value, option prices are “high,” so the trader will write
puts, rather than buy calls. Here, he is selling volatility. If the puts’ IV declines to its long-run aver-
age value, the put prices will decline, and the put seller will profit even if the stock price does
not rise.

18.7.5 Market Volatility Index (VIX)

The volatility implied in option prices is important financial information. Beginning in 1993, the
Chicago Board Option Exchange began computing and disseminating a real-time, market-wide
implied volatility index. Thus, during the trading day, investors can monitor the market’s assess-
ment of expected stock market risk by looking up the symbol (VIX). By its construction, the Mar-
ket Volatility Index, is a 30-day forward-looking measure of the dispersion of expected returns of
the Standard & Poor’s 100 Index (OEX).

Whaley (1993) describes in detail how the VIX is constructed as well and discusses how the
VIX can be used. Briefly, however, thz VIX is calculated as follows. Each minute during the trad-
ing day, the implied volatility from eight OEX options is calculated. These eight options are
divided into two groups, one group representing options with the nearest expiration date and the
other representing options with the second-nearest expiration date. Both groups of options consist
of the two calls and two puts with strike prices immediately above and below the current OEX
level. After the implied volatilities have been calculated, they are weighted such that the VIX rep-
resents an implied volatility of an at-the-money OEX option with 30 calendar days to expiration.
Data on the VIX can be found at the exchange’s website (www.cboe.com/MktData/vix.asp).

18.7.6 The Volatility Smile and the Term Structure of Volatility

If the Black—Scholes model is correct, then all options with the same underlying asset should have
the same implied volatility, regardless of their strike prices or times to expiration. If options sys-
tematically differ in their implied volatilities, then either the BSOPM is wrong (perhaps because of
flawed assumptions behind the model) or the market is mispricing the options.

Given actual trade prices, there is often a structure to volatilities implied by the BSOPM. This
volatility structure is generally divided into two parts: a volatility smile (also known as the
“skew”) and a term structure of volatility. The volatility smile describes the way implied volatil-
ity varies across strike prices for a given expiration date. The “term structure of volatility” is the
relationship among implied volatility across expiration dates for a given strike price.!”
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As an example of the volatility smile, consider the data in Table 18.1. where the option pre-
mism column gives average bid—ask prices for June 2000 S&P 500 Index call and put options at
the close of trading on May 16, 2000. Such data are available each day at the CBOE website
(www.cboe.com). Then, taking the May 16, 2000, closing S&P 500 Index level of 1466.04, a risk-
less interest rate of 5.75%, an estimated dividend yield of 1.5%, and T=0.08493 year (31 days to
expiration), we can use the FinCAD function, aaBSG_iv; to generate implied volatilities.

The columns of Table 18.1 present the strike price, the call price, the call’s implied volatil-
ity, and the call price, computed with a standard deviation of 0.22 (which is approximately the
implied volatility of the around-the-money options). Then the put price, the put’s implied volatil-
ity, and the put price computed with a standard deviation of 0.22 are presented in the last three
columns.

From Table 18.1, one can see that implied volatility is not constant across strike prices. In
addition, comparing columns 2 and 4 shows that if you use the constant at-the-money implied
volatility of 0.22 to price all the calls, there are systematic pricing errors. That is, the in-the-money
call options appear to be overpriced (their actual prices are above their theoretical prices) and the
out-of-the-money call options appear to be underpriced (their actual prices are below their theo-
retical prices).

The implied volatilities of put prices are also not the same for all strike prices. But interest-
ingly, the out-of-the money puts have higher implied volatilities than the in-the-money puts. For
calls, the reverse is generally true. That is, for strikes up to 1600, the out-of-the-money calls have

TABLE 18.1 Implied Volatility Across Strike Prices

Theoretical Theoretical

Strike Call Price Put Price
Price  Call Price CalllV withc=0.22 Put Price PutIV  with 0=0.22
1225 1.5625 0.3360 0.054
1250 2.34375 0.3283 0.153
1275 2.625 0.3021 0.390
1300 3.8125 0.2920 0.904
1325 5.75 0.2855 1.919
1350 129.5 0.2834 124.335 8.25 0.2762 3.753
1375 107.625 0.2689 102.510 11.375 0.2641 6.809
1400 86.625 0.2534 82.353 14.875 0.2463 11.533
1425 67.625 0.2423 64.288 20.0625 0.2315 18.350
1450 50.6875 0.2324 48.648 29 0.2285 27.592
1475 35.625 0.2201 35.612 38.625 0.2152 39.437
1500 22.5 0.2036 25.178 50.875 0.2016 53.885
1525 14 0.1982 17.173 66.75 0.1923 70.762
1550 7.875 0.1912 11.291 85.375 0.1826 89.761
1575 4.375 0.1896 7.154 106.875 0.1788 110.505
1600 2.28125 0.1881 4.367 129.5 0.1668 132.600
1625 1.21875 0.1897 2.569 153.375 0.1512 155.684

1650 0.625 0.1912 1.457
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Figure 18.5 Volatility smiles: diamonds, call IV; squares, put IV.

lower.implied volatilities than in-the-money calls. But the “smile” appears for the calls when
strikes exceed 1600.

Figure 18.5 graphs the volatility smile data presented in Table 18.1. Actually, only the calls
exhibit a slight smile (perhaps a smirk?). Puts show only a decline in their implied volatilities as
strike prices rise.

Traders should account for any relationship between ¢ and K when they use the BSOPM to value
options. Otherwise, if they use just one constant volatility to value all options, they will conclude that
options are systematically over-or undervalued, depending on how far they are in or out of the money.
One way to account for the volatility smile uses the following quadratic regression equation:

V=a+8 1n(i)+ﬁ ln(£)2+8 (18.10)
k) ™ \k '

This model states that the implied volatility in option prices is a quadratic function (U-shaped, if
B is positive) of S/K, which measures the extent to which the option is in or out of the money.
Using the call data in Table 18.1 to estimate Equation (18.10) results in the following information:

o =2.169318 (t = 6.639)

B, = —4.47227 (t = —6.727)

B, =2.522705 (1 = 7.484)
R? =0.988

These coefficients are unlikely to be constant over time. Therefore, traders should use the most
recently available price data to estimate the model. This method is a simpler approach than esti-
mating a stochastic volatility model.'8

Volatility smiles may occur if volatility itself is stochastic. In other words, an assumption
behind the BSOPM is that the volatility of the underlying asset is constant, right through expira-
tion. But a more accurate depiction of security markets is that the volatility of returns changes
from day to day. Many individuals in the market spend considerable time trying to accurately pre-
dict future volatility. Volatility may trend up and down, and it may randomly fluctuate around the
trend. Occasionally, jumps (discontinuities) in the time series of prices occur. Volatility that
changes over time, and/or jumps, can create volatility smiles.
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18.8 GENERALIZING THE BLACK—SCHOLES OPTION PRICING
MoDEL

It is important to understand that many option pricing models are related. For example, you will
see in Chapter 20 that many exotic options are simply parts of the BSOPM. The BSOPM itself,
however, can be generalized to encapsulate several important pricing models. All that is needed is
the addition of a cost-of-carry term, b. Then, one can use this generalized model to price European
options on non-dividend-paying stocks (Black and Scholes, 1973), options on stocks that pay
a continuous dividend (Merton, 1973), currency options (Garman and Kohlhagen, 1983), and
options on futures (Black, 1976). The formulas for the generalized options are as follows:

C

wen =S¢ TN(d)) - Ke" N(d,) (18.11)
and

P, = Ke " "N(~d,) - Se* " N(-d,) (18.12)

gen

where, S, K, r, T, N(d), 0, In, and e are as defined in Section 18.2. However, in the generalized
BSOPM, we have

In(S/K)+ (b+0%12)T
- : (18.13)
! oT
2
4= In(S/K)+ (b - /)T =d —oNT (18.14)

oT

and

b = cost-of -carry rate of holding the underlying asset

By altering the ‘b’ term in Equations (18.11) through (18.14), four option pricing models emerge.

Setting Yields This European Option Pricing Model

b=r Stock option model (i.e., the BSOPM)

b=r-0 Stock option model with continuous dividends, &

b=r-rs Currency option model where 7is the foreign risk-free rate
b=0 Futures option model

18.9 OprTIONS ON FUTURES CONTRACTS

Because we have spent considerable time examining options and futures, it is natural to spend a bit
of time learning about options on futures contracts. A futures option is an option on a futures con-
tract. A call futures option gives the owner the right but not the obligation to assume a long posi-
tion in a futures contract. The buyer of a futures call pays a premium to the seller (writer). The
writer of a futures call has the obligation to deliver a futures contract should the call owner decide
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to exercise it. The strike price is the futures price at which the long position is assumed. Upon
exercising a futures call, the positions are marked to market. Thus, whereas the exerciser of an
“ordinary” call must pay $K to acquire the asset, the exerciser of a futures call is actually paid
the intrinsic value of the option. That is, the futures contract is immediately marked to market, and
the exerciser is paid $(F —K) to go long a futures contract, where F is the futures settle price on the
exercise day, and K is the striking price.

Futures options trade on many different exchanges, with underlying assets consisting of virtu-
ally every successful futures contract. The Wall Street Journal presents their prices in tables that
are based on the underlying commodity. For example, see Figure 14.8. Different conventions exist
for interpreting futures options price data. Therefore, before you ever trade futures options, be sure
to learn how to read the data!

Many futures options have expiration dates in months that are not delivery months for the
futures contracts that underlie them. For example, there are January, February, and March S&P
500 futures options (in fact, you can trade S&P 500 futures options with any of 12 expiration
months). But S&P 500 futures contracts expire quarterly: in March, June, September, and Decem-
ber. The same situation exists for all foreign exchange futures that trade on the IMM. What this
means is that January, February, and March futures options have March futures underlying them.
April, May, and June futures options require the delivery of June futures contracts, and so on. An
investor who exercises a February put on a lapanese yen futures contract, will go short one March
yen futures contract at the strike price.

The last trading day of futures options differs from contract to contract, and it can differ for a
given contract, depending on whether the option expires in the futures’ delivery month or in a non-
delivery month. Always contact the exchange on which a futures option (or futures contract) trades
for current contract specifications, as these can change at any time.

18.9.1 Valuing European Futures Options

Black (1976) derived a formula for computing the value of a European call option on a forward or
futures contract. Black made all the assumptions that were behind the BSOPM, including constant
interest rates. This last assumption is critical because if interest rates are known, a futures price is
equivalent to a forward price.!®

From Equations (18.11) through (18.14), by setting »=0, and using F to denote the underly-
ing asset, Black’s model for call options is generally written as follows:

C=e"T[FN(d,)- KN(d, )| (18.15)
and for puts, it is
P=e""T[KN(~d,)- FN(-d,)] (18.16)
The delta of a European futures call is
A.=e"TN(,); 0<A <1
and the delta of a European futures put is

A,=—e"T[1-Nd)]; -1<A,<0
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Note the similarity to the BSOPM. The only difference is that Fe~ " is substituted for S. Intuitively,
this makes sense because Fe™’” is the present value of F. , in continuous time. Thus, the Black
model combines the BSOPM with the cost-of-carry futures pricing model.

Observe Equations (18.15) and (18.16). Suppose that a futures call is very deep in the money
so that N(d,)=N(d,)=1.0. Then Equation (18.15) yields a theoretical call value of

C=¢"T[F-K]

This is the present value of its intrinsic value, which is less than its intrinsic value of F— K. This
means that a deep in-the-money European futures call can sell for less than its intrinsic value
(unless r or T is zero), regardless of whether there are payouts such as dividends on the underlying
asset. Similarly, if a futures put is very deep in the money, then

P=e¢"T [K~F)

which is the present value of K —F. Thus, we can conclude that like calls, European futures puts
can also sell for less than their intrinsic value.

Finally, it is logical to expect the Black model to underprice exchange-traded futures options
because it is a European futures options pricing model. However, all futures options that tradé in
the United States are American futures options. We will see next that both American futures calls
and puts can exercised early if they are sufficiently in the money. Therefore, the prices of Ameri-
can futures options will almost always have an early exercise premium above that of their Euro-
pean equivalents.

18.9.2 Valuing American Futures Options

All the futures options that trade in American markets are American-style contracts. Accordingly,
the owners of these options can exercise them at any time before expiration. Because owners might
find it optimal to exercise early, American futures options cannot be worth less than otherwise
identical European futures options. Also, an American futures option cannot sell for less than its
intrinsic value.

There will always exist a critical futures price, F~, for which early exercise will be optimal.
For American futures calls, it is the futures price at which the call sells for its intrinsic value. If
F>F", then the futures call owner will find it optimal to exercise early. The owner of an American
futures call might find it optimal to exercise early even when there are no dividends or carry
returns. Note that this is differeat from a call on a spot good, which will be exercised early only
Just before an ex-dividend date. For American futures puts, F~ is the price at which the put sells for
K —F (its intrinsic value); if F is below F *, it will be rational to exercise the American futures put
early.

We see intuitively, that deep in-the-money futures options are exercised early because when
an investor exercises them, he receives a cash inflow, since the futures position is marked to mar-
ket. By not exercising early, the investor is missing out on interest income on the futures option’s
intrinsic value.

Because deep in-the-money futures puts and calls might be exercised early, American futures
options will almost always be worth more than European futures options.20
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18.9.3 Put-Call Parity for Options on Futures Contracts

For European futures options, the put—call parity proposition is:

C-P=(F-K)1+r)"=PV(F-K) (18.17)

Note that Equation (18.17) combines the standard cost-of-carry pricing model [(F =S(1+nr'=
S+ carry costs)] with the standard put—call parity theorem.?!
For American futures options, the put — call parity proposition is:??

Fl+r)T-K<C-P<F-K1+r)" (18.18a)
or

PV(F)-K<C-P<F-PV(K) (18.18b)

18.9.4 Strategies That Use Options on Futures Contracts

Any option strategy covered in Chapter 15 can be replicated with futures options and futures
contracts. Note, however, that when one is going long or short futures, there is no initial cash flow;
in contrast, when one is buying and selling stock, there are initial cash outflows and inflows,
respectively.

For example, a bullish stock market investor can use S&P 500 futures options to speculate on
that belief. He can buy futures calls. Alternatively, he can reduce his initial outlay by buying a ver-
tical futures call spread. These strategies offer one significant advantage over simply going long
the March S&P 500 futures contract: there is a limited loss if the bullish investor is wrong.

A crude oil producer might purchase put options on crude oil futures contracts as insurance
against the risk that the spot price of crude oil will decline below the price at which the firm will
no longer earn a sufficient profit.

For another example, consider an investor who believes that the $/¥ exchange rate will be
stable in the near future. The investor can sell a strangle on the Japanese yen by selling a futures
call and selling a futures put.

Next, suppose a manager of a portfolio of Treasury bonds expects interest rates to remain sta-
ble, or perhaps rise somewhat. He can use T-bond futures options to his advantage. He might con-

sider writing futures calls as a way to increase income. Note that this is not exactly a covered call

position because instead of being long T-bond futures contracts, the manager is long spot bonds.
Consider an equity portfolio manager who would commit funds to the market if the S&P 500
fell another 10 points. He might consider writing out-of-the money naked futures puts as a way of
increasing income: Here, the sale of the futures puts serves as a substitute for placing limit buy
orders.
Thus, we see that futures options offer market participants opportunities to speculate on their
beliefs, and to hedge against adverse price changes.

18.10 AMERICAN CALL OPTIONS

If there are no dividends, the basic BSOPM values American calls as well as European calls. The
reason for this is that absent dividends, we know that rational investors will not exercise American
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call options early. If the underlying asset does pav dividends, however, there are several methods
of estimating the value of an American call. These include the following:

1. The BOPM

2. Pseudo-American call valuation model

3. Roll-Geske~Whaley compound option model

4. Numerical methods and simulation

We have already covered the BOFM (Chapter 17). The BOPM provides estimates as accurate
as those of methods 3 and 4 at no greater effort or computer time. Refer to Jarrow and Turnbull
(2000, pp. 257-258), and Hull (2000, Appendix 11B) to learn about the Roll-Geske-Whaley
model. Chapter 16 of Hull (2000) and Part Six of Wilmout (1998) cover numerical methods and
simulation. Here, we will discuss only the pseudo-American approximation model.

18.10.1 Pseudo-American Call Model

Recall that an American call will be exercised before expiration cn a day before the underlying stock
trades ex-dividend, if at all. Suppose there are two ex-dividend days before expiration, f1 and £2:

0 1l 2 T

As with the discrete dividend pricing model for European options (see Section 18.5.1), we
assume that we can decompose today’s stock value into two components: a riskless component
that equals the present value of the dividends at times ¢1 and ¢2, and a risky component that con-
sists of the present value of all dividends after time 7.

Suppose vou knew that the call was going to be exercised immediately before time ¢1, that is,
at time t1— € (€ represents an instant). Then the life of the option is only from time O to time 1.
Although the call exerciser pays $K for the stock at time t1 — ¢, she also will immediately receive
the dividend, divl. Moreover, by owning the stock at time ¢1 - €, she will also be entitled to receive
the present value of the second dividend, div2(1+r)~ (2= Thus, define the following values:

S* = 8- PV(divs) = S—div(1 + r) ™ —div2( + )™
K= K - divl - div2(1+ r) %
T'=n1
To find the value of this option, which we will refer to as Cg (S stands for “short”), substitute
the §" for §, K” for K, and T" for T into the BSOPM. _
Suppose instead that you knew that the call was going to be exercised just before the second

dividend, that is, at time 12 — €. Now, the exerciser pays $K for the stock, and she will immediately
receive the dividend, div2. Define:

K™ = K—-div2

T =12

To find the value of this option, denoted as C,, (M stands for “medium”), substitute S* for S,
K" forK,and T" for T, into the BSOPM.
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Finally, suppose you knew that the option would not be exercised early. Then the value of the
option equals the value of a European call on a dividend-paying stock expiring at time 7. As
explained in Section 18.5.1., such a call can be valued by substituting S* into the basic BSOPM.
Refer to this option as C; (L stands for “long”).

k T 67 days =time unt;l exp:ratwn day

-1 easz:s f

=5 N(dl) -k 'e‘”‘ N(dz) (42 909>< 0. 8721) (38 5689 % 0. 85045) 4 6205

You are encouraged to use the FmCAD function aaBS$ to check this answer. In this exam- -

ple, because the pseudo-American call model in Equation (18.19) states that the call will °

be the greater of Cy and CL, the value of the Amencan call is max(4.298, 4.6205), or
$4 6205 e
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According to the pseudo-American call valuation model, the value of an American call on a
dividend-paying stock is the greatest of Cs, Cy,, and C;:23

C =max(Cy, Cy, C;) (18.19)

Financial CAD offers two programs to compute the value of American options: aaBIN2 for
continuous dividends and aaBINdcf for discrete dividends. If aaBINdcf is used to value the
pseudo-American call option example in Section 18.10.1, a theoretical value of 4.709 is found. As
predicted, the pseudo-American model underpriced this option. Figure 18.6 shows the results from
aaBINdcf.

18.10.2 American Puts

Because they might be exercised early, American puts present the same valuation difficulties
as American calls on dividend-paying stocks. Actually, the problem is worse, because American
puts may be exercised anytime. In contrast, American calls will be exercised only just before an
ex-dividend date.

Geske and Shastri (1985) discuss the factors that increase the likelihood that American puts
will be exercised early. They find that American puts will most likely be exercised early immedi-
ately after an ex-dividend date. This is logical because a put holder would typically expect the
stock price to decline on the ex-dividend date, so he will be inclined to wait until after the next
ex-dividend date before exercising. Furthermore, some investors own the underlying stock plus pro-
tective puts. These investors will frequently wish to receive any dividends that are forthcoming.

aaBINdcf ;
underlying price - Ao : 44|
exercise price: . 40)
expiry date oo .1 19-Sep-2000}
value (settlement)date 14-Jul-2000
volatility S -

rate - annual compounding
accrual method - riskless rate -

statistic

t_14
dividend payment table
all the dividend dates from the dividend amount
value date to the expiry date
22-Aug-2000] 1.1]

fair value 4.708767055

Figure 18.6 The Financial CAD function aaBINdcf is used to value American calls when the underlying
asset pays a discrete dividend.
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If so, they may be inclined to wait until after the ex-date before exercising their puts. Lower inter-
est rates and transactions costs will also discourage early exercise.

In the absence of dividends, there will always exist some critical stock price below which the
holder of an American put will exercise. That critical stock price is the price at which an American
put sells for exactly its intrinsic value, K —S. In many cases, the critical stock price is not too
much below the strike price. For example, for an option with the parameters K=$20, r=10%,
o=0.4/year, and T=3 months, the critical stock price is $14.75. At that stock price, an otherwise
equivalent European put is valued at less than its intrinsic value, while the American put is worth
its intrinsic value of 5.25. Figure 18.7 illustrates the pricing of an American and a European put
given the foregoing parameter values.

The BSOPM works reasonably well for short term, out-of-the-money puts because the
probability of early exercise is low. However, when the probability of early exercise is non trivial,
several other methods exist to value American puts. These include the following:

1. The BOPM
2. Numerical methods

3. Approximation techniques

The BOPM was applied to the valuation of American puts in Section 17.4. The FinCAD
functions aaBIN2 and aaBINdcf can be used to value American puts; these functions employ
the binomial option pricing model. Numerical methods lie beyond the scope of this book.
However, several approximation methods to value American puts exist. These methods include
a technique introduced by Johnson (1983), the compound option approach of Geske and Johnson
(1984), and quadratic approximations derived by MacMillan (1986) and Barone-Adesi and
Whaley (1987).

Put value |
European put
8.53
5.5 N
\ &— American put
N
| | s
11 14.75 K=20
PV(K)=19.53

Figure 18.7 Relative pricing of an American and a European put when K=$20, =3, months, r=10%. and
o=40%/year. At prices below the critical stock price, $"=$14.75, the American put is worth its
intrinsic value. At and below S”, the American put will be exercised early.
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18.11 SuMMARY

This chapter provides a summary of some of the continuous time option pricing models that have
been developed. The BSOPM is the easiest to use because it is a formula that can be solved by
hand. However, the BSOPM is developed under critical assumptions. Figlewski (1989a, 1989b),
who studies the impact of real markets (in which the cited assumptions do not hold) on option pric-
ing, has concluded that in practice, the BSOPM wiil provide only guidelines for option values.
Figlewski finds that option prices can lie within rather wide bounds without permitting any arbi-
trage ‘profits from trading the underlying asset, bonds and the options. In particular, he cites the
importance of accurately predicting the underlying asset’s volatility and the problems caused by
indivisibilities, brokerage fees, and bid-asked spreads. These factors make call replication (hence
arbitrage) difficult. In other words, the BSOPM ignores many real considerations that also affect
actual option prices. As such, the model should be used only to compare prices of different
options, not to establish definitive option values.

Even when the BSOPM is used as an approximation, remember that the model is developed
under a specifically assumed stochastic process for the underlying asset, and thus it may not pro-
vide accurate values for American options that are likely to be exercised early. In contrast, the
more flexible BOPM can always be used to value an option on an asset that follows any type of
stochastic pricing process, and also can value American options. Other option pricing models have
been derived to value options when the underlying asset follows specific pricing processes. Other
techniques have been developed to aid us in valuing American options. However, these techniques
almost always require the use of a computer.
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Notes

1See Black and Scholes (1973). Many paperé contributed to the development of the Black—Scholes option pricing
model. See Smith (1976, footnote 3 and section 3), for a summary of several of these models.

2Ramaswamy and Sundaresan (1985) incorporate stochastic (i.e., randomly changing) interest rates into a stock
index futures option pricing model.

31f a stock’s returns are lognormally distributed, the log of the stock’s relative prices, that is, In(S/S,_ ), is normally
distributed. Note that the log of the stock’s relative prices equals the stock’s continuously compounded returns.

1t is also frequently written as C=SN(d,)—K(1+r)"TN(d,). This version assumes discrete discounting to permit
computation of the present value of the strike price.

3See the appendix to this chapter for a table of the cumulative standard normal distribution function.

6See Chapter 10.

THowever, the current price of the stock is a function of its expected return. Thus, if new information were suddenly
revealed that caused investors to expect a stock to double in price (i.e., its expected return is 100%), we would
expect that § would quickly be revalued to reflect its equilibrium required rate of return. The latter is a function of
the stock’s risk.



NOTES

8Several numerical approximation formulas exist to compute the values of N(d,) and N(d,). For example, a handy
approximation, accurate to two decimal places if 0<d<?2.20 is given by:

N(d) =05+ 54'14;‘1)

For d,=0.064745, N(d,) is approximately 0.528068. The same formula works for d,, when 0<d,<2.20. Thus, to
compute N(d,), where d, =~0.045255, one must take advantage of the symmetry of the normal distribution, That is,
N(=d;)=1-N(d,). Therefore, to compute N(—0.0452553), we would write

N(~dy) =1~ N(d,)
0.045255(4.4 — 0045255))

=1 —(0.5+
10

= 0.48029

Chriss (1997) provides additional numerical approximations accurate to four, six, and more decimal places.

9A similar intuitive interpretation of N(d,) does not exist. However, the whole term, So N(d,), can be interpreted as
the expected value (using risk-neutral probabilities) of the stock price conditional on the stock price exceeding the
exercise price times the probability that the option will expire in the money.

10An implicit assumption for this model is that & is the volatility of only the portion of today’s stock price that con-
sists of the present value of dividends after expiration. The model essentially-says that S consists of two compo-
nents: a riskless part, which is the present value of dividends between today and expiration, and a risky part, which
is §”. The volatility of §" is described by o.

The version is C~P=S- PV(divs)— Ke ",

12These definitions of u, d and q are given in Cox and Rubinstein (1985, p. 200), but they are not unique. Using a
slightly different technique, Jarrow and Turnbull (2000, p- 135) define the appropriate values of u, d, and g to be

1
173
[(r-(a2 /2))(T/n)+oﬁﬁ]
u=e
4 [(r—(cr2 /2))(T/n)—dm]
=e

In the example just presented in the text, if r=12% per year, then Jarrow and Turnbull’s formulas would result in,
u=1.183173 and d=-0.836775. Then S,=Se* and S, = Se? using the Jarrow and Turnbull notation.

BFor example, if S is an ex-stock split price of 40.625, Sn, the last price before the ex-day, is 80, and the split size
is 2, then the return is: '

lnl:-(z)(‘;Lo‘&S)] =0.0155042

14For a discussion of these extreme value methods; see Yang and Zhang (2000). Cho and Frees (1988) develop a
variance estimator that employs every observed trade during some intraday time interval. Their estimator makes use
of bid and ask prices and the length of time between price changes.

SHowever, some closed-form estimators exist. For example, see Brenner and Subrahmanyam (1988) and Corrado
and Miller (1996a).

¥For a discussion of various methods, see Corrado and Miller (1996b).
17Plotting both effects simultaneously in a three-dimensional picture results in a volatility surface.

18Shimiko (1993) offers a similar approach to account for the volatility smile.
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18.15 You may wonder whether there is a dif-
ference between the implied volatility of a
European call on a dividend-paying stock and
the implied volatility of an American call on
the same dividend-paying stock. FinCAD may
provide a clue to this question. Use aaBSdcf_iv
and aaBINdcf_iv to compute the implied
volatility for the situation in which the stock
sells for $60/share and it will trade ex-dividend
one month from- “today”; the dividend amount
is $1/share. The call option itself has a strike
price of 55, it expires two months from today,
and the call premium is 7. The riskless interest
rate is 6% for all maturities on the yield curve.
Explain your results.

Partial answer: The implied volatility for the
European call is 47.225%. You should work
with FinCAD until you come up with this
answer. Then proceed to compute the implied
volatility for the American call.

18.16 Look in a recent Wall Street Journal.
Choose an option that satisfies the following:

a. There must be a put and a call with the
same underlying asset and the same
strike price.

b. At least 100 puts and 100 calls must
have traded.

c. The time to expiration is greater than
two weeks and less than three months.

Find the ticker symbol for your underlying asset
(www.cboe.com/tools/symbols/ can help you
here). Find the historical volatility for your
underlying asset (go to www.cboe.com/tools/
historical/ and click on the most recent textfile
with the data). Then use the FinCAD function
aaB$S to compute the theoretical fair value for
your put and for your call.

18.17 A deep in-the-money European put
can sell for less than its intrinsic value. An oth-
erwise equivalent American put must sell for at
least its intrinsic value. Use the FinCAD func-
tion aaBS$ to find the price at which a European
put sells for less than its intrinsic value. Start

with an at-the-money put, with the underlying
asset and the strike price both equal to 50. The
option expires two months from today. The
volatility of the underlying asset is 35%.
The riskless interest rate is 6%. You should find,
using aaBS, that the fair value of the European
put is 2.602122697. Continue to work with the
inputs (lines 2-11) for aaBS until you come up
with this solution. Then, start reducing the price
of the underlying asset by $1 at a time, until the
fair value of the put is less than intrinsic value.
Print the page at which this happens.

Partial Answer
Price of
Underlying Intrinsic  Fair Value
Asset Value of Put
49 1 3.074543875
48 2 3.603770217
47 3 4.190380375

Note how the put’s theoretical value is
approaching its intrinsic value. Continue with
this process until you find the price of the under-
lying asset that produces a put value that is less
than its intrinsic value. Finally, use aaBIN to
find the theoretical value of an American put,
taking as the underlying asset price the one that
produced a fair value for the European put that
was less than its intrinsic value.

18.18 Lets check how closely put—call
parity holds for index LEAPS (long-term
equity  appreciation  security). Go to
http://quote.cboe.com/QuoteTable.htm. Click
on “all options and LEAPS for this underlying
(complete file)”. The underlying index is SPX
(the S&P 500 Index option). Scroll down the
resulting file (which may take a minute or two
to get) until you see “XX DEC” options, where
XX are the last two digits of next year (e.g., in
November 1999, XX =00). Choose the at-the-
money strike and record the midpoint of
the bid-ask spread for the put and the call.
For example, on November 19, 1999, the S&P
was at 1422, so the following data were
observed.
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Calls Puts
Bid  Ask Bid Ask
00 Dec 1425 SXGLQ-E 151 /4 155 Y4 00 Dec 1425 SXG XQ-E 955 99 5/

Use the basic put—call parity proposition, a. At what price does Mr. Bull have the
C-P=§S-PV(K) to determine how closely right to go long a December futures?
put—call parity holds when actual prices are used. b. Does Mr. Bull have to hold the
Then, use the FinCAD function aaBSG to esti- futures call option until expiration?
mate the theoretical fair vatues for your put and Explain.

your call. Note that the “holding cost” is the div-

> 3 ) 3 ’ ¢. Suppose that before the third Friday
idend yield on the index, which you should esti- of December, the December S&P 500
mate from recent information (Barron’s presents futures pricej rises to 1395.45 and

this information each week). Estimate the risk- the futures call premium rises to
less interest rate from data in a recent Wall Street $2750. Mr. Bull decides to exercise the
Journal. The volatility of the S&P 500 is typi-
cally about 22%. Options expire on the third
riday of the month. Print the aaBSG output files.

futures call option. Calculate his cash
inflow.

d. On subsequent days, his long futures

18.19 The Black-Scholes option pricing position is marked to market daily.
model will often underprice the true value of Calculate Mr. Bull’'s cash flow if
American options. Explain why. the. S&P 500 futures price rockets to

18.20 Suppose that Mr. Bull buys a call 1400.

option on a December, 200!, S&P 500 futures 18.21 Suppose the December comn futures
contract. The call costs him $1750, has a strike ~ price is 333.75. Calculate the value of an option
price of 1375, and expires on the third Friday on this futures contract, assuming K=350, the
of December. The December futures price on riskless interest rate is 7.50%/year, there are 79
that day is 1318. days to expiration, and ¢ = 20%/year.

APPENDIX  Notes on Continuous Compounding and
Stock Return Distributions

A18.1 ConTtiNuous COMPOUNDING

Suppose you have $1.00 today, and a bank pays interest of 6%, compounded annually. Then one
year from today, you will have $1.06, and two years hence, you will have 1(1.06)(1.06)=$1.1236.

If the bank pays interest of 6%, compounded monthly, then it is paying '/2% interest
each month. Thus, after one month, you will have $1.005. After two months, you will have
1(1.005)(1.005)=$1.010025. After 12 months, you will have 1(1.005)'*=$1.06168. Thus, a 6%
interest rate, compounded monthly, provides you with a 6.168% annual rate of return. After 24
months, your original dollar will be worth $1.12716.

Define the following terms:

F=future value
P=present value
r=interest rate
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m=number of times interect is compounded per year (e.g., m=12 if interest is compounded
monthly).
t=number of years
The general formula for determining the future value of a present amount, if interest is com-

pounded is:
mt
F= P(l + L)
m
In this example, if m =12 and ¢t =2, we would have

(12)(2)
F=l(1+0—1'g§) =$1.12716

Interest can be compounded at smaller intervals of time. For example, interest can be com-

pounded daily, or by the second. As m gets larger, the more frequently interest is compounded. As
m approaches infinity (=), it can be shown that

F=Pe" (A18.1)
Like r, which equals 3.1415927 ..., e is a specific number, namely, 2.7182818. Thus, if you

deposit $1.00 into a bank that pays 6% interest, compounded continuously, then after one year,
you will have

F =190 = §1 0618
and after two years, you will have
F =199 = ¢1.1275

If your calculator has an “¢*” button, then verify that ¢>%=1.0618 and that ¢*'>=1.1275. If
your calculator has a “‘y*” button verify the foregoing equation by using y=2.7182818.

If you are told that you are earning ¢% on your money, compounded continuously, then you
can compute the effective annual rate of return, a%, by using this relationship:

e —1=a

For example, ¢*%—1=0.0618. In other words, 6% compounded continuously is equivalent to
6.18% compounded annually. See example A18.1 for an application.

Given an annual rate of a%, you can reverse the procedure to find the equivalent continuously
compounded rate, c%:
e-1=a

e=1+a

In(e®)=1In(1+a)

c=In(1+a)

_compounded continuously?

 Answer O 1=16.1834%.

18.1 What is the effective annual rate that is
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Thus if you earn a rate of return of a% per period, finding the natural logarithm of (1 +a) will
provide you with the equivalent continuously compounded rate of return.

If a stock rises from $14/share to $18/share, its rate of return is (18— 14)/14=0.2857143=
28.57143%. 1ts continuously compounded rate of return is In(S,/S:1)=1n(18/14)=1In(1.2857143)=
0.2513144. This 25.13144% continuously compounded rate of return is equivalent to an “uncom-
pounded” rate of return of 28.57143%.

It is stated later (Section A18.2.2) that if a stock follows geometric Brownian motion, the dis-
tribution of its returns will be lognormally distributed. If returns are lognormally distributed, the
log of the stock’s relative prices are normally.distributed. The log of relative prices are equal to the
stock’s continuously compounded returns.

A18.2 Stock RETURNS DISTRIBUTIONS

A18.2.1 Geometric Brownian Motion

One assumption used in deriving the BSOPM is that the stock price randomly wanders through
time following a price path called geometric Brownian motion. Although much of the background
material necessary to understand geometric Brownian motion is mathematically quite difficult, the
implications of the stock price following this particular stochastic process is important for a dis-
cussion of the BSOPM. Thus, what follows is a discussion that is aimed at helping users of option
models decide whether the value of the underlying stock or asset moves randomly according to
geometric Brownian motion or some other stochastic process.

The stochastic process that the underlying asset must follow in order to derive the BSOPM is
called geometric Brownian motion, and it is defined by:!

AS
— = At + oAz
S Ha (A18.2)

where

AS/IS=(S;, a.—S,)/S,=rate of return on the stock

i=expected (constant) return on the stock per unit of time

At=a unit of time

c=the (constant) standard deviation of the stock’s return during the unit of time
z=a normally distributed random variable with a mean of zero and a variance of ¢.

The random variable z, is called a Wiener process. Over small intervals of time, changes in z,
Az, are normally distributed random variables, with E(Az)=0, and var(Az)= Ar. The covariance of
any two Az is zero; in other words, cov(Az,,,Az,)=0.

Note that Az is just a normally distributed random variable, with a mean of zero and a variance
of Ar. Suppose At is one day. We draw a value of Az out of a probability-distribution that has a
mean of zero and a variance of one. If, instead, we are interested in Az over one week, and At is one
day, then Az is drawn out cf a probability distribution having a mean of zero and a variance of 7
(because there are seven days in a week). The mean is always zero and the variance is proportional
to time. In addition, any two realizations of Az are independent.

555
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EXAMPLE A18.2 Suppose At is one day. A stock has an expected return of 1 =0.0005
per day.? The standard deviation of the stock’s daily return distribution is 0.0261725.2

* The return generating process is such that each day the return consists of a nonstochastic

component, 0.05%, and a random component. The latter equals the stock’s daily standard
deviation times the realization of Az, which is drawn from a normal probability distribu-
tion with a mean of zero and a variance of one.

Table A18.1 depicts one particular realization of the stochastlc process driving’ this
stock’s price over a 60-day period. The first column is the day number. The second column is
the realization of Az, a random number drawn from a normal distribution with a mean of zero
and a variance of one. The third column illustrates how the stock price would move if there
were no stochastic component to its return. That is, each day, the stock’s return is 0.05%. The
fourth column gives the stochastic component, 0Az, where ¢=0.0261725/day. The daily

return, R, is Azr+ oAz, Column five lists each day’s stock price, where S(T=S(T-D[1+R].

TABLE A18.1 An Example of a Stock Price Path Over a 60~day Period Driven by
Geometric Brownian Motion

Nonstochastic - Stochastic  S(D=S(T-1D[1.0+R]
' Trend Price Component R=uAt+olz

Day’ Az S(T)y=8(T-1){1.0005] (0.0261725)Az" - At=1Day

0 1.000000 1.000000

1 ~2.48007 1.000500 ~0.064910 0.935590

2 ~0:87537 1.001000 -0.022911 0.914623

3 —0.80587 1.001501 ~0.021092 0.895789

4 -1.03927 1.002002 —0.027200 0.871871

5 0.10523 1.002503 0.002754 0.874709
6 0.66993 1.003004 0.017534 0.890483

7 —0.21137 ' 1003505 ~0.005532 0.886002

8 2.19733 1004007 0.057510 0.937398

9 -0.82807 1.004509 -0.021673 - 0.917551

10 0.58783 - 1.005011 0.015385 " 0.932126

11 -1.25487 1.005514 . -0.032843 0.901978

12 -0.26827 1.006017 ) ~0.00702% 0.896096

13 1.28023 "~ 1.006520 0.033507 0.926569

14 0.56773 1.007023 0.014859 0.940800

15 ~0.03447 1.007526 0000902 . - - 0.940422

16 1.29413 1.008030 - 0.033871 2 0.972745. -

17 0.06143 1.008534 0.001608 0.974795

18 0.79553 1.009038 0.020821 0.995578

19 1.66593 1.009543 0.043601 -1,039485-

20 ~0.44497 1.010048 ~0.011646 1027899

21 -0.03137 1.010553 -0.000821 1.027569

22 0.36873 1.011058 0.00965{) 1.037999
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 TABLEA18.1 Continued

© Nomstochastic  Stochastic  S(T)=S(T-D[10+
e , Trend Price Component R=pAt+olz
Day Az S(D=S(T-D[10005]  (0.02617125Az At=1Day

. -020397 . 10UIS63 . . 0005338 . 1032977
013357 1012060 0003496 - 1029882
034653 CIOI2575. . 0.009069 1039737
020593 1013082 . 0005390 1045861
27 -0.04727 - 1013588 -0001237 1045090
28 . -0.64737 1014095 0016943 1027905
29 041207 104602 001078 1017333
30 006837 1015100 - -00017%0 . im0l
31 020927 . 1015617 -0.005477 - 1010964
32 055077 . 1016125 . 0014415 0.996897
33 -038087 1016633 _00099%68 0987458
0.27863 LoI7TI4L 0007202 . 0995152
35 -044457 ~ 1.017650 0011636 0984071
o SLOTTIT 1018158 0008192 0956819
37 017163 1018667 000492 096159
38 050863 Cro9177 0 ooI3312 0914877
39 078913 1019686 0.020653 0995499
40
41

RERE

049757 1020196 -0.013023 0983033
: 1337310706 0034645 L LO17582
Ca2 083613 e 0.021884 f 1040359
; 182237 0727 004769 S 0991258
44 038177 LO22238 0009992 0981849
A5 1T 1022749 —0.030681 © 0.952215
46 126993 1023261 : 0033237 1 .0.984341
035793 1023772 0009368 T 0i994054
CIELB4673: 1.024284 i 0048333 T 1042807
~135187 1024796 Q035382 e 1006229
6187 1025309 L 0019940 S 0/986668 i
CUU0HT6T 1025821 ~0.012371 0 n 10974955
22147 : 1026334 - =0.005797 0969791
120347 10 1026847 : ~0.031498 - L0939730. 4
041413 1.027361 0010839 - 0.950385
- =0,78127 , 1.027875: .. .. ~0.020448 0931427
1.59143 1028388 0041652 <. . DYTOGES
0.44953 1.028903 0.011765 0.982594
148893 . 1.029417 . 0.038969 - 1.021376
- ~0.72487 1.029932 -0.018972 ST 002509
~0.50337 1030447 —0.013175. -1 0989803
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ollowing geometric Brownian motion.

s how the stc ;k'pﬁce}mm,;oo) in colunun 5 of Table A18.1
60-day period. The graph very much looks like a typical stock’s

A18.2.2 Lognormal Stock Returns

You may have noticed that the three returns distributions shown earlier (Figure 18.1a—c) are not
normally distributed. In fact, one result of the stock following a geometric Brownian motion is
that returns are “lognormally” distributed. Specifying that returns are lognormally distributed is
equivalent to saying that the natural logarithm of the relative prices, In(S,,/S;|), are normaily
distributed.

Lognormal returns are realistic for two reasons. First, if returns are lognormally distrib-
uted, then the lowest possible return in any period is —100%. In contrast, if returns are nor-
mally distributed, there is some probability that returns will be less than —100%. The difference
between normally distributed returns and lognormally distributed returns is illustrated in Figure
Al18.2.

If a security’s return during a period is —100%, the terminal stock price at the end of the period, S,
is zero. Then, In(S,,/S;;) =1In(1 + R) =In(0) =— oo, which is the “left tail” of any normal distribution. But
the left tail of a lognormal distribution is anchored at 0 when R, the return, is — 100%.

Second, lognormal returns distributions are “positively skewed.” Positive skewness is char-
acterized by the extended right tail in Figures 18.1 and A18.2. This is realistic because while
the lowest return in any period is —100%, the highest return will likely be in excess of 100%
when measured over a year. Thus, a realistic depiction of a stock’s returns distribution would have
a minimum return of —100% and a maximum return well beyond +100%. The longer the time
interval under consideration, the more valid the latter statement becomes. Therefore, annual
returns will be more positively skewed than monthly returns, and monthly returns will be more
skewed than daily returns. Returns distributions will not be symmetric. They will be skewed to
the right.

There is one last point to consider. It was stated that the natural logarithm of a stock’s relative
prices will be normally distributed if the stock follows the pricing process we are describing. The nat-
ural logarithm of relative prices, In(S,,/S;;)=In(1+R), is a continuously compounded return. In other
words, if a stock price follows a geometric Brownian motion, its continuously compounded returns are
normally distributed. Its returns measured over any longer interval of time are lognormally distributed.
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/ Lognormal

/Normal

Probability

g

~100% Return

Figure A18.2 Lognormal and normal probability distributions.

To summarize, then, three important concepts of this section are:

1. An important assumption of the BSOPM is that the stock price follows a geometric
Brownian motion.

2. As aresult of this assumed stock price behavior, returns over a given interval of time are
lognormally distributed and continuously compounded returns are normally distributed.

3. If the stock’s price follows a geometric Brownian motion, its returns variance is propor-
tional to time and the standard deviation of its returns is proportional to the square root of
time (see Section 18.1.3).

Assuming that geometric Brownian motion governs the movements of the underlying stock
price is important. In particular, in some instances the geometric Brownian motion is restrictive.
For example, in the geometric Brownian motion process, the stock price changes by just a little bit
every instant. While this is an adequate description for most stocks at most times, it does not fit the
stock’s situation in all cases. For instance, suppose a stock is a target of an unfriendly takeover that
is being resisted. Suppose the stock price is midway between the offer price and the stock price
before the tender offer. If the acquisition is successful, it is likely that the stock price will jump,
instantaneously, by $10/share. However, if the target defends itself, it is likely that the stock price
will decline by $5/share. Under these circumstances, the stock price would be well described as
usually following a continuous diffusion process. However, at random times, the stock price
“jumps” a random amount up or down. If there is a nontrivial probability of a jump in the price of
the underlying asset, the BSOPM may not be adequate when valuing options on that asset.*

Another problem is that in the geometric Brownian motion model, the variance of the stock’s
returns is assumed to be constant regardless of the stock’s price. However, there is considerable evi-
dence that stock prices are more volatile at lower prices than at higher prices. In addition, consider-
able research has concluded that returns variances themselves change randomly over time; that is,
they are stochastic. This seems reasonable, because both the nature of the firm and its environment
randomly change over time. The variance of a stock’s returns distribution will likely be greater on a
day that an earnings report is released, a dividend announcement made, or a government statistic on
the economy released, than on other days. Several models have been developed to price options
under conditions of stochastic volatility. These papers also cite considerable research that supports,
both theoretically and empirically, the idea that stock returns variances randomly change over time.>

559



560 18 CONTINUOUS TIME OPTION PRICING MODELS

A18.3 CUMULATIVE PROBABILITIES FOR THE STANDARD NORMAL
DISTRIBUTION

TABLE A18.2a Cumulative Probabilities for the Standard Normal Distribution: Negative
Values of z

Second Digit of z
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

=35 0.0002 0.0002 0.0002 0.0002 0.0002  0.0002 0.0002 0.0002 0.0002 0.0002
-3.4 0.0003 0.0003 0.0003 00003 0.0003  0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
=32 0.0007 0.0007 0.0006 0.0006 0.0006  0.0006 0.0006 0.0005 0.0005 0.0005
-3.1 0.0010  0.0009  0.0009 0.0009 0.0008  0.0008 0.0008 0.0008 0.0007 0.0007
-3.0 0.0013  0.0013  0.0013 0.00i2 0.0012  0.0011 0.0011 0.0011 0.0010 0.0010
-2.9 0.0019 0.0018 0.0018 00017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023  0.0022 0.0021 0.0021 0.0020 0.0019
=27 0.0035 0.0034 0.0033 0.0032  0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043  0.0041  0.0040 0.0039 0.0038 0.0037 0.0036
—25 00062 0.0060 00059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
24 0.0082 0.0080 0.0078 0.0075 0.0073  0.0071 0.0069 0.0068 0.0066 0.0064
=23 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.2 00139 0.0136 0.0132 00129 00125 0.0122 0.0119 ~ 0.0116 0.0113 0.0110
=21 0.0179 0.0174 00170 0.0166 0.0162  0.0158 0.0154 0.0150 0.0146 0.0143
-2.0 0.0228 0.0222 0.0217 0.0212  0.0207  0.0202 0.0197 0.0192 0.0188 0.0183
-1.9 0.6287 0.0281 0.0274 0.0268  0.0262  0.0256 0.0250 0.0244 0.0239 0.0233
-1.8 0.0359 0.0351 0.0344 0.0336  0.0329  0.0322 0.0314  0.0307 0.0301- 0.0294
-1.7 0.0446 0.0436  0.0427 0.0418 0.0409  0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505  0.0495 0.0485 0.0475 0.0465 0.0455
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618  0.0606 0.0594 0.0582 0.0571 0.0559
-14 0.0808 0.0793 0.0778 0.0764 0.0749  0.0735 0.0721  0.0708 0.0694 0.0681
-1.3 0.0968 0.0951 0.0934 00918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 0.1151  0.1131  0.1112  0.1093  0.1075  0.1056 0.1038  0.1020  0.1003  0.0985
~1.1 0.1357 0.1335 0.1314  0.1292  0.1271  0.1251 0.1230 0.1210 0.1190 0.1170
-1.0 0.1587 0.1562  0.1539  0.1515  0.1492  0.1469 0.1446  0.1423 0.1401 0.1379
~-0.9 0.1841 0.1814 0.1788 01762 0.1736  0.1711 0.1685 0.1660 0.1635 0.1611
-0.8 02119 02090 02061 02033 02005 0.1977 0.1949  0.1922 0.1894 0.1867
-0.7 02420 0.2389  0.2358 02327 02296  0.2266 0.2236  0.2206 0.2177 0.2148
-0.6 0.2743  0.2709 0.2676 02643 02611  0.2578 0.2546 0.2514 0.2483  0.2451
-0.5 0.3085 0.3050 0.3015 02981 02946  0.2912 0.2877 0.2843 -0.2810 0.2776
-04 0.3446  0.3409 03372 03336 03300 0.3264 03228 0.3192 03156 0.3121
-0.3 03821 03783 03745 03707 03669  0.3632 03594 03557 0.3520 0.3483
0.2 04207 04168 04129 0409 04052 04013 0.3974 0.3936  0.3897 0.3859
0.1 0.4602 04562 04522 0.4483  0.4443  0.4404 0.4364 04325 0.4286 0.4247
-0.0 0.5000 0.4960 0.4920 04880 04840  0.4801L 04761 04721 0.4681 0.4641

Example: N(-0.22)=0.4129
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TABLE A18.2b Cumulative Probability for the Standard Normal Distribution: Positive
Values of z

Second Digit of z
z 0.00 0.01 002 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 05040 0.5080 0.5120 0.5160 05199 0.5239  0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517  0.5557  0.5596 0.5636  0.5675 0.5714 05753
0.2 0.5793  0.5832 0.5871 0.5910 0.5948  0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179  0.6217 0.6255 0.6293  0.6331  0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772  0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019  0.7054  0.7088 0.7123  0.7157 0.7190 0.7224
0.6 0.7257 07291  0.7324  0.7357 0.7389  0.7422 0.7454  0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 07673  0.7704  0.7734 07764  0.7794 0.7823 0.7852
0.8 0.7881  0.7910 07939  0.7967 07995  0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186  0.8212 0.8238  0.8204  0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 08508  0.8531 0.8554 0.8577 (.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729  0.8749 0.8770  0.8790 0.8810 0.8830
1.2 0.8849  0.8869 0.8888 0.8907 0.8925  0.8944 0.8962  0.8980 0.8997 0.9015
1.3 0.9032 0.9049 09066 09082 09099 09115 09131 09147 09162 09177
1.4 09192 09207 09222 09236 09251  0.9265 09279 09292 09306 0.9319
1.5 0.9332  0.9345 09357 09370 09382  0.9394 09406 0.9418 0.9429 0.9441
1.6 09452 09463 09474 09484 09495  0.9505 09515 0.9525 09535 09545
1.7 09554 09564 09573 0.9582 09591  0.9599 09608 09616 0.9625 0.9633
1.8 0.9641 0.9649 09656 09664 09671  0.9678 0.9686 09693 0.9699 0.9706
1.9 09713 09719 09726 09732 09738 0.9744 09750 0.9756 0.9761 0.9767
2.0 09772 09778 09783 09788 0.9793  0.9798 09803 09808 09812 0.9817
2.1 09821 0.9826 09830 09834 09838  0.9842 09846  0.9850. 0.9854 0.9857
22 09861 0.9864 09868 09871 09875 0.9878 0.9881 0.9884 0.9887 0.9890
23 0.9893 0.9896 0.9898 0.9901 0.9904  0.9906 0.9909 09911 09913, 0.9916
24 0.9918 09920 0.9922 0.9925 09927  0.9929 0.9931 09932 0.9934 0.9936
2.5 0.9938 0.9940 09941 09943  0.9945  0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953  0.9955 0.9956 0.9957 09959  0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 09967 0.9968  0.9969  0.9970 09971 09972 09973 0.9974
2.8 09974 09975 09976 09977 09977  0.9978 0.9979  0.9979 0.9980 0.9981
29 09981 0.9982 09982 09983 .0.9984  0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 09987 0.9987 0.9988 0.9988  0.9989 0.9989 09989 09990 0.9990
3.1 09990 09991 09991 09991 09992  0.9992 09992  0.9992 0.9993 0.9993
3.2 0.9993 09993  0.9994 09994 09994  0.9994 0.9994 0.9995 0.9995 0.9995
33 0.9995 0.9995 09995 09996 09996  0.9996 0.9996 0.9996 0.9996 0.9997
34 0.9997 0.9997 0.9997 0.9997 09997  0.9997 0.9997  0.9997 0.9997 0.9998
35 0.9998 0.9998  0.9998 09998  0.9998  0.9998 0.9998 0.9998 0.9998 0.9998

Example: N(0.64)=0.7389
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Notes

1 Actually, the stochastic process exists in continuous time. Thus, At is an “instant”, g is the instantancous expected
rate of return, O is the standard deviation during one instant of time, and the returns process is:

gs‘i = udt +odz
2A return of 0.0005/day is 0.05%/day. If this were compounded over 365 days, the expected annual return would be
(1.0005)*%° ~1=0.20016, or 20.016% per year.
31f the standard deviation of the stock’s daily returns is 0.0261725, the variance of the stock’s daily returns is
0.000685, the variance of the stock’s annual returns is (365)(0.000685)=0.250025, and the standard deviation of
the stock’s annual returns is (0.250025)°°=(0.0261725)(365)">=0.500025.
4For additional detailed discussions on jump process option pricing models, see Cox and Ross (1976), Merton
(1976a, 1976b), Cox, Ross and Rubinstein (1979), Jarrow and Rudd (1983, Chapter 12), Ball and Torous (1985),
and Wilmott (1998, Chapter 26).

SFor additional detailed discussions on stochastic volatility models, see Hull and White (1987), Johnson and Shanno
(1987), Scott (1987), Wiggins (1987), Finucane (1989), Heston (1993), and Wilmott (1998, Chapter 23).



CHAPTER 19
Using Options for Risk Management

Volume in option trading continues to remain robust. In this chapter, we focus-on the details of
how options provide price insurance. That is, how can a risk manager protect an underlying port-
folio from adverse price changes using options? As you learned in earlier chapters, options can be
used to limit downside risk while still allowing upside participation. These results can be provided
by either the fiduciary call strategy (purchase calls and debt instruments) or the protective put
strategy (the owner of an asset buys puts). Also, options can be used to limit upside risk while
reaping any benefits from declines in the price of an underlying asset. This can be achieved by
buying calls to provide insurance against a short position.

Also in this chapter, we will present some necessary technical details concerning how option
values change as the factors that influence option values (S, K, r, T, 6) change. Risk managers
must be aware of these details to use options effectively. Although option contracts are indispens-
able tools for risk management, market participants use options for other reasons. These include
the following.

* Options can generate ddditional cash flow. The sale of covered calls provides additional
cash flow. Of course, the writer of a covered call also hopes that the underlying asset price
does not rise much above the strike price. Writing naked puts is a revenue-providing strat-
egy that is used as a substitute for placing limit orders to buy an asset.

* Options can be used to exploit tax-related situations. Writing a covered call as a substitute
for the outright sale of the asset might defer a capital gain, or stretch a short-term gain into
a long-term gain. Many other tax-driven strategies exist, but users should always obtain an
opinion from tax accountants or tax attorneys before attempting to use options to reduce
taxes.

Options provide leverage. Because the purchase of a call is equivalent to buying the under-
lying asset and borrowing, the leverage provided by options may exceed that available to
many market participants who purchase only the underlying asset. The initial premium of
an option is generally only a small fraction of the cost of buying the underlying asset.

* Options can circumvent short selling difficulties. If an asset cannot be easily sold short, the
purchase of a put may be the most efficient method for generating profits from a price
decline in the underlying asset.

An important question every risk manager faces is whether to buy options to insure against
adverse price moves or to use forwards, futures, or swaps to hedge against price risks. Unfortu-
nately, there is no easy answer to this question. However, here are some important considerations.
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When options are used to buy insurance, there is an initial cash outflow, the option premium.
This is often a negative factor in the decision to use options to manage risk. By contrast, forwards,
futures, and swaps can often be used with no initial cash outflow. Recall that forwards, futures, and
swaps can often lock in a price. That is, these contracts can sometimes reduce price uncertainty to
zero. However, this might be a negative factor in the decision to use these derivatives to manage
risk. Using forwards, futures, and swaps instead of options means that in 50% of the cases, the risk
manager will be likely to regret having hedged a spot position. This occurs when an unhedged
position would have benefited from the subsequent price change. When used as insurance, options
hedge only downside risk. The insurer will capture the upside, less the cost of insurance (the
option premium). These differences are illustrated in Figure 19.1 for the situation in which a firm
has a long position in the underlying asset and faces the risk that prices will fall.!

In Figure 19.1a, the sale of futures or forwards hedges the long position in the underlying
asset. The result is the horizontal line with a zero change in profit, regardless of price changes.
Figure 19.1b illustrates how the purchase of a protective put insures against downside risk, but
allows. for profitable participation should the price of the underlying asset rise. Thus, risk man-
agers must understand the trade-off of hiaving to pay for insurance vs the alternative of hedging,
which has zero initial cost. Given this trade-off, the risk manager must next consider his beliefs
about the direction of prices and his tolerance for taking risks of adverse price movements.

Suppose the policy of a firm is to have a continuous hedging strategy.? This firm’s risk man-
ager expects prices to move in a way that would actually benefit the firm if it was unhedged. This
risk manager may wish to use options, so that the firm will benefit from the beneficial subsequent
price change. Under the situation in Figure 19.1, she might want to buy the protective put. This
will cost an initial put premium, but if she is correct and prices do rise (by an amount large enough
to offset the cost of the put), the firm will be better off than it would have been, had it hedged by
selling forwards or futures.

Furthermore, the risk manager is not bound to just one strategy. It is possible to initially buy
the put and, if prices rise, later sell the put (at a loss), and sell futures or forwards to lock in the
value of the spot position at a higher price.

(a) (b) . Risk profile of
Change in profits a long position
Change in profits Risk profile of a
long position in the
underlying asset
Resulting
y risk profile
Price change
Price change K All risk can be
removed, with a / Buy a protective
f perfect hedge ‘ put for insurance
Profit diagram for
the sale of futures or
forwards

Figure 19.1 Profit diagrams illustrate the difference between (a) hedging and (b) insurance.



19.1 THE GREEKS

Next we discuss “the Greeks,” which refer to the analysis of how an option’s value changes if
there is a change in one of the factors that determines its value (o, S, r, T, or K). These sensitivities
are determined by taking the partial derivative of the Black-Scholes option pricing model
(BSOPM) with respect to one of these determinants of value, and each result has traditionally been
assigned a Greek letter. Understanding these measures is extremely important for everyone who
uses options, particularly those who use them in risk management programs. '

19.1 THE GREEKS

A risk manager cannot make a well-informed decision to use options without knowing how option
values change as the factors that influence those values change. This knowledge is necessary for
the risk manager to understand how the value of a portfolio consisting of the underlying asset and
options will change during the life of the hedge.

The theoretical call value determined by the BSOPM can be partially differentiated with
respect to each of its five parameters, K, T, r, 6, and S.3 The results are formulas that predict how
much a call option value will change if only one input parameter changes by a small amount, all
else equal. That is, no other input parameter values are allowed to change. Economists call such an
analysis “comparative statics,” or sensitivities. Because each of the sensitivities is commonly
known by a Greek letter, the BSOPM comparative statics are also known as “the Greeks.” Each of
the Greeks has a “sign.” A positive sign means that the option value will increase when the factor
increases, all else constant. A negative sign means that the option value will decrease when that
factor increases, all else equal. To begin, let us look at the Greeks for call options.

19.1.1 The Greeks for Black-Scholes Calls (a.k.a. “No-Name,”
Theta, Rho, Vega, Delta, and Gamma)

The formulas for the Greeks for Black—Scholes calls are as follows.4

Partial
Derivative  Greek Brief
Notation Letter Interpretation Formula Sign
aC By how much will a call —eT N(d,) <0
oK price change, given a change
in the strike price?
5 .
oC theta B)f how much vyﬂl acall [ oN"(dy) >0
oT ) price change, given a change  Ke —J_‘— +rN(d,)
in the time to expiration? WNT
oC rho By how much will a call TKe T N(dz) >0
or ) price change, given a change
in the riskless interest rate?
oC vega By how much will a call’s SﬁN'(dl) >0

Jc (v) value change, given a change
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in the volatility of the
underlying asset?

aC delta Hedge ratio: By how much N(d)) >0, but
aS ) will a call price change 0<A<]
given a change in the value
of the underlying asset?

oA 9%C gamma By how much will a call’s N'(dy) >0
3 as? 1)) delta change, given achange  §g/T

in the price of the underlying

asset?

In these formulas, note that there are terms for N(d,) and for N’ (d,), where N'(d) is the height
of the standard normal density at d (and d can represent any value of d; or d,). It can also be thought
of as the incremental change in the area under standard normal distribution at d. It is given by

aN@) _ e
od 211

Recall that the normal distribution function sums the area under the normal curve from —oo to d.
The normal density measures the height of the normal curve at d. Thus, if there is a small change
from d to d’, the distribution function increases by the value of the density at d.

N'(d) =

009 _ 0061875
- 0.28284
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rest rates were (0 rise from 10% to 110%, the value of the call
ain, however, it is more accurate to interpret the number as
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meaning that an increase in the riskless interest rate from 10% to 11% would result in an
increase in the value of the call equal to $0.10159, or about 10 cents. This example illus-
trates that it is not critical to have a precise value for the riskless interest rate.

5o =SVTN'(d)= @D(¥0.50)(0.3971) =13.193

The value of N'(d,) in the foregoing equation is:
'dflz o~ (00994°12)

= 0.39697
~/2II 42(3 1416)

Thus, if o were to increase by 1.0, from 0.40 to 1.40, the value of the call would rise by
about $13.193. More realistically, if the volatility increased from 0.40 to 0.50, the call’s
value would be $1.3193 greater than originally estimated. Also, note that the call price
would be lower by $1.3193 if the volatility fell to 0.30. Because & is the only parameter
that is not observable, it must be estimated. This example illustrates just how critical an
accurate estimate of ¢ must be! It also demonstrates the potential rewards from buying
options when implied volatility is low and expected to rise, and from selling options
‘when implied volatility is high and expected to decline.
Next, let us calculate

aCc
25

This means that if the stock price were to rise by one dollar, we would expect the call
value to increase by about $0.54, all else equal. The delta of a call option must be greater
than or equal to 0 but less than or equal to 1. Note that for an at-the-money call option,
where d, =0, the delta is about 0.50. We will discuss the importance of delta in detail later
in the chapter.

= N(dl) 0.5396

Fo9A_dC_N(d)_ 039697

=0.02986
oS  as? Smf— 47 x 0.40 x +/0.50

Given the example just discussed, an increase in the stock price of $1 will increase
the call delta by 0.02986. In other words, currently, the delta of the call is 0.5396. If the
stock were to rise in price from $47/share to $48/share, the délta would rise to about
0.56946. This Greek is known as gamma, and we will also discuss the importance of

. gamma later in the chapter.

The FinCAD function AsBS will compute the Greeks for our example, as shown in Figure 19.2,
Note that FinCAD follows convention by presenting theta as a negative number for the one-
day decay in the call price. The actual value (from FinCAD) of —0.020025318 is very close to the
value we computed (7.3093/365=-0.020025 per day). FinCAD’s value for vega of 0.131930711
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fair value 5.041250976
Delta 0.539603796)
Gamma 0.929862089|
Theta -0.020025318
Vega 0.131930711
Rho 0.101600637

Figure 19.2 The FinCAD function AaBS computers the Greeks.

is the amount the call value will changz if the volatility of the underlying asset increased from 0.40
to 0.41. Use FinCAD to compute the value of the call if 6=41% and check this result. Finally,
FinCAD’s value for rho is 0.101600637, which is the amount that the theoretical call value will
rise if the interest rate rises from 10% to 11%.

19.1.2 The Greeks for Black-Scholes Option Pricing Model: Puts

The following equations define how the value of a European put changes, given that any one of the
five underlying determinants of option values changes, all else equal. Once the Greeks for calls
have been obtained, the Greeks for puts can be obtained by differentiating the variable P in the
put—call parity formula P=C-S+Ke~ T (The key is to remember that both P and C are functions
of K, T, r, S, and 0.)

Partial
Derivative Greek Brief .
Notation Letter Interpretation Formula Sign
JP By how much will a call aC  _,r >0
3K price change, given a change K te
in the strike price?
B_P theta’ By how much will a put _3_C_ —rKke™ T S0
oT OF price change, given a change oT
in the time to expiration?
P rho By how much will a put 9 _ TKe T <0
ar P) price change, given a change or

in the riskless interest rate?
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oP vega By how much will a put’s aC , >0
3 ) value change, given a change 3o =SVTN (dl)
in the volatility of the
underlying asset?
aC delta Hedge ratio: By how much aC <0, but
— . . v 1= N(dl) -1 ,
S A) will a put price change s “1<A<0

given a change in the value
of the underlying asset?

JA 9%p gamma By how much will a put’s N'(dl) >0
s =W )] delta change, given a change

in the price of the underlying SoT

asset?

There are some interesting features about the put sensitivities. First, note that the sign of theta
for a put is indeterminate. Mathematically, this is because in absolute value, the second term in
the equation can be less than or greater than the theta of a call.® Second, the influence of volatility
is the same for puts as it is for calls. Third, the delta of a put equals the delta of a call minus one.
Consequently, the gamma value of a put equals the gamma value for a call.

19.2 THE IMPORTANCE OF DELTA

Delta is vital in formulating and evaluating option strategies. Therefore, addition to what has been
said thus far in this chapter, as well as in Chapters 17 and 18, Section 19.2.1 is devoted entirely to
the concept of an option’s delta.

19.2.1 What Is Delta?

The delta, A, of a call is 9C/dS=N(d,). The delta of a put is dP/dS=N(d,)— 1. Option deltas are
also frequently called hedge ratios. Delta describes the change in the value of the option, given a
small change in the value of the underlying security, all else equal.

Some insight into delta is gained by a graphical analysis. In Figure 19.3, the value of a call on
a non-dividend-paying stock is graphed as a function of the stock price. The call’s delta is the slope
of the call pricing line at any point. Thus, if the call is déep out of the money, its delta is about zero.
The delta of a call increases as the stock price increases. When the call is deep in the money, it sells
for about its intrinsic value and the delta of the call approaches one. The delta of an American call
that sells for exactly its intrinsic value is one. This should occur only when there is an ex-dividend
date before expiration.

The delta of an in-the-money call will typically be above 0.50. On the expiration date, an in-
the-money call will be priced on the S--K line, which is a 45° straight line. That is, the delta of an
in-the-money call at expiration is 1. Thus, we can state that as the expiration date nears, the delta
of an in-the-money call rises toward 1, all else equal. Similarly, the delta of an out-of-the money
call will usually be below 0.50, and it will fall toward zero as time passes, all else equal. At expi-
ration, the delta of an out-of-the-money call is 0.
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Figure 19.4 shows how American puts are valued as a function of the price of the underlying
asset. The delta of a put is the slope of the put pricing line at any stock price. When $>>K, a put is
deep out-of-the-money, and its delta is about zero. As the stock price falls, delta declines. A deep
in-the-money put will have a delta of —1. The American put price curve eventually coincides with
the K-S line. As shown in Figure 19.4, S” is the critical stock price. At and below S”, the American
put should be exercised early, and its delta will have declined to —1.0. The delta of a European put
will not become —1.0 until its price has declined to equal K(1+r)~7-S8.

The delta of an out-of-the-money put will rise toward zero as time passes, all else equal.
The delta of an in-the-money put will fall toward —1 as the expiration date nears, all else equal.
A useful rule of thumb is that at-the-money call deltas are about (.50, and at-the-money put deltas
are about —0.50.

Understanding delta is fundamental to understanding what you are buying or selling when you
trade options. The purchase of a call with a delta of 0.50 is tantamount to buying half a share of
stock, mostly with borrowed funds. Buying a put with a delta of —0.20 is essentially equivalent to
selling short 0.20 share of stock and lending the proceeds of the short sale plus some additional sum.

C

s

Figure 19.3 A call’s delta ranges from about O (for a deep out—of;the-money call) to about 1.0 (for a deep
out-of-the-money call) as the stock price increases.

P

ForS<S*, A=-1

s* K

Figure 19.4 The delta of an American put declines from about 0 (for a deep out-of-the-money put) to ~1.0
(for a deep out-of-the-money puts for which S<S" as S declines, where S is the critical stock price at
which an American put sells for its intrinsic value).
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Delta measures the investor’s exposure to changes in the price of the underlying asset. If a call
has a delta of 0.70 and if the price of the underlying asset increases by one dollar, the price of the
call will likely increase by 70 cents ($70 for a call on 100 shares), all else equal. As the price of the
underlying asset, its volatility, the time to expiration, or the riskless interest rate changes, so does
the delta of an option.

19.2.2 What Is Gamma?

An option’s gamima, I, measures how delta changes as the stock price changes. Recall that the
delta of a put equals the delta of a call minus one. Thus, because the differentiable terms in a call
delta and a put delta are the same, the gamma for a put equals the gamma for a call:

_3a_d°C_d’P_N(d)
3S 098?982  SoNT

Consider a deep out-of-the-money call. The delta of such a call is about 0. If the stock price were
to change by a small amount, delta would still be 0. Thus, the gamma for a deep out-of-the-money
call is about 0. Similarly, because the delta of a deep in-the-money call is about 1.0, delta will
not change if § changes by a small amount. Thus, the gamma of a deep in-the-money call is also
about 0. Similar logic applies for the put gamma.

The gamma for a call and a put is maximized when the option is at the money. In other words,
if § changes by a small amount, the delta of an at the money call will change by a great amount.
How great? If the call has a long time to expiration, the change in delta will not be much, perhaps
gamma will equal 0.1 (this value will still be greater for at the money calls than for in-the-money
or out-of-the-money calls with the same time to expiration). If the call has a short time to expira-
tion and is at the money, gamma will be higher. Imagine an at-the-money call late on its expiration
day. If the stock rises by one cent, the call is in the money and its delta will be 1. But if the stock
declines by a penny, the call is out of the money and its delta will be 0. What this means is that
deltas of at-the-money calls with short lives are quite unstable. Thus, the gammas of calls (and
puts) that are exactly at the money on their expiration day are very high.

Figures 19.5 and 19.6 depict how a call’s delta and gamma are functions of the price of the
underlying asset, all else constant.

1.2
1

0.8

0.6

Delta

0.4

0.2

-0 10 20 30 40 50
Stock price

Figure 19.5 Call deita as a function of stock price.
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Figure 19.6 Call gamma as a function of stock price.

19.3 RiskLess HEDGING

One of the great insights of Black and Scholes (1973) was the realization that by holding the
proper combination of stock and calls, an investor could create a riskless hedge. This statement is
nothing more than a restatement of the idea that a call (or any option or portfolio of options) can
be replicated with a portfolio of stocks and riskless bonds. In other words, we know that

C=AS+B

where 0SA<1 and B<0. The equation says that buying a call is equivalent to buying stock and
borrowing. Now, rearrange the equation to read

C-AS=B
or
-C+AS=-B

This says that buying A shares of stock and selling a call is like riskless lending.

The delta of a call defines a “hedge ratio” for creating a riskless hedge. If A shares of stock are
bought and one call written, the position is riskless." Strictly speaking, the riskless hedge exists
only for small changes in the stock price and over very small time intervals. As time passes and/or
the stock price changes, the delta of the call changes (as measured by gamma). As A varies, shares
of stock must be bought or sold to maintain the riskless hedge.

Now, suppose you were to find what you believe is a mispriced option. You ¢an use the risk-
less hedging concept to “arbitrage.” Quotes are used because the arbitrage profit will be realized
only if you are correct in the estimate of volatility that went into your theoretical option price.
Recall that the BSOPM assumes that volatility and interest rates are constant for the life of the
option. Thus, unexpected changes in volatility and/or interest rates create risk. Note that these
changes can work in your favor or against you.

Suppose you found a call option that you believed was overpriced in the market. To take
advantage of your opinion, you would sell the call and buy A (0SA<1) share of stock. Similarly,
if, in your opinion, a call was underpriced, you would buy the call and hedge the purchase by sell-
ing a fractional amount (A) of a share of stock. In either case, your “riskless hedge” will provide
you with a rate of return in excess of the riskless interest rate, regardless of what the stock does.”
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The term “riskless hedge” appears in quotes because, in reality, there is still risk with this strat-
egy. The risk stems from the fact that the fractional share bought or sold is given by A. In turn, A is
based on the BSOPM, and, as a consequence, A reflects an estimate for volatility, o. Believing that
an option is underpriced is equivalent to believing that the implied volatility (IV) is too low while
believing that an option is overpriced is equivalent to believing that its implied volatility (IV) is too
high. A trader whose volatility assessment is incorrect will fail to realize the profit he expected. Of
course, if his volatility assessment is very inaccurate, he could even lose money.

A “purer” form of arbitrage (an initial cash inflow, and a zero cash flow at expiration, regard-
less of S;) can be eamned if you were to borrow or lend the funds needed to set up the riskless
hedge. Compare the BSOPM:

C = SN(d,) - Ke " N(d,)

to the BOPM:
C=SA+B

In each equation, the first term on the right-hand side defines the amount of money to invest in the
stock: N(d,;) shares=A shares of stock, at a price of $S/share. The second term on the right-hand
side defines the appropriate amount to borrow or lend, as necessary, to complete the replication of
the call: B=—Ke™ ""N(d,). You would borrow when, as in Example 19.2, you are buying A shares
of stock and selling an overpriced call. You lend when selling A shares of stock and buying an
undervalued call. It is important to note that what you are actually doing is either buying an under-
valued call and, at the same time, selling a replicated call; or selling an overvalued call and, at the
same time, buying a replicated call.®
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TABLE 19.1 Rephcaung a Call: Delta Changes as the Stock Price Changes
and asthe Exp:ratlon Date Nears

Daysto  AMAT Weekly Deltaofan
Expiration  Price Return’ 85 AMAT Call (6=32.7%) -
700 86315 : 0.604

63 89.500 00355 o 0.700

56 © 94000 00491 : 0.822

49 93125 . ~0.0094 . 0813

42 ‘ 90.250 -0.0314 0.745

35 v 85.375 ~0.0555 10.560

28 86.625 0.0145 0620

21 93,125 0.0724 0.894

14 93,750 00067 0.945

7 90,625, -0.0339 0.928

 Case I: Closing Price Such That Trader's Volatility Estimate was Correct®

0 S 91625 - 00744 ‘ 1.000 -
: Average weekly return ‘ 0.0122
Weekly return standard deviation - 0.0453
Annualized 0.3270 i

Case li: Closing Price Such That Market's Volati!ity Estimate was correct®

0 80.375 ~0.1200 0000
Average weekly retum. - : 00072
. Weekly return standard deviation -~ 0.0561
Annualized ‘ 04047

' This is the continuously compounded rate of return, ln(PZIPl) Thus, in(89 5/86. 375) =0.0355 and
n(90.625/93.75)==0,0339. :

2 Note that if the expiration day c]osmg priceis 85, the trader’s estimate of mhmhty (32 7%) wﬂl alsof
be correct.

? Note that if the explrauon day closing price is 103.5, the market's amglled volauhty (49 5%) wlll
also be correct.

be correct (i.e., 32.7%). In Case II, the AMAT final stock price is such that the market’s
implied volatility estimate 10 weeks earlier turns out to be correct (i.e., 40.5%).
Let us return to the moment in time with 10 weeks to option expiration. Suppose -
a trader wants to try to arbitrage the overvalued (in his opinion) AMAT 85 call.
_Although the market price of this call is $7.25, the trader believes that the call option
should sell for $6.127 because he thinks the market has overestimated AMAT's future
tum volatlhty To assist in the understanding of the arbitrage, recall the BSOPM,

c= =SN(d))~ Ke”" N(d, )
long call —long stock — short T-bills (i.e., borrowing)
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g That is; an actual long call posmon equals a theoretical portfolie consisting of a long stock f‘ '
position funded by a short position in T-bills (ie., borrowing). In this arbitrage case,

- occurs every seventh day. In practice, there is a trade-off between lettmg the reqt
. composition of the equivalent portfolio stray too far from the cutrent position and
' ring the transactions costs to rebalance. Here, every seventh day, the trader takes « one of :
- two actions, either purchasing more shares and financing the purchase byi mcreasmg the;
-- amount borrowed, or selling shares and investing the proceeds (i.e., reducing the amount

- borrowed). The details of rebalancing the hedge portfolio appear in Table 19.2. The first

. tion, each on 100 shares of stock. The trader initially hedges a short position in the calls

finances the purchase by borrowing this amount at 6% for 63 days. Thus, the

19 USING OPTIONS FOR RISK MANAGEMENT

because the trader writes overpriced calls, he must “hedge” this position with a purchaseof |

: -~ a theoretical (replicated) call. The trader replicates the call using his belief that ¢isonly -

32.7%. Thus, the cost of replicating the call (6.127) is less than the price he receives from

 selling the overpriced call (7.25). The difference ($1.123) is the theoretical arbitrage profit,

 ifthe trader is correct about his volatility beliefs. Thus, with 70 days to expiration, the trader

~ sells a call for $7.25, and borrows money ($46. 043) to finance the purchase of A=0.604
L shares of stock. At the time of the arbitrage, the trader realizes a cash inflow of $1 123

Sell (ovetpnced) call [0 ‘ +$725 i
Buy 0.604 shares of stock at $86.375/share: ~$52.17] Buy replicated =
Borrow o : +$46.043 call - oo

‘Net mﬂow; i : +$1.123

If the trader is cbrréci, the “mispricing” she has identified has an expected proﬁt o
$1.123 per share (before commissions).
In this example we assume that readjustment of the equivalent (or ‘”hedge”) partfoho L

column is the days until expiration, and the second column is the AMAT stock price: C
umn three is the delta of an AMAT 85 call (calculated by using the trader’s volatility csix ;
mate of 32.7%). The fourth column shows how many shares are bought or sold, column,
five represents the cost of additional shares or the proceeds from selling shares .
Column six is the interest expense or income from the subsequent share transactions.
Suppose the trader decides to sell 100 AMAT 85 call options with 70 days to explra

by purchasing 6040 shares. The number of shares to purchase is obtained by mulnplymg
the' initial hedge ratio (i.e., A) by the number of shares underlying the options i.e.,
(10,000). To- complete the synthetic long call position, the trader must also borrow
$460,430. The interest expense will be $460,430x (¢©097939 _1y=g5329, :
Seven days later, A=0.700 for the 85 call. Given this new delta, the equivalent port- -
folio requires that the trader be long 7000 shares. Because the trader originally bought
6040 shares on day 0, this indicates a need to purchase 960 additional shares at_ the new
AMAT market price of $89.50/share. This will cost ($89.50 x960=) $85, 920 ,

(ultimately) incur an interest expense of $894 [(¢/®996339)_1) ¢85 920~$894]~an~;t1ns~ o
new borrowing. As Table 19.2 illustrates, this rebalancing process occurs. every seven. .
days until option expiration. ,
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In Table 19.2, there are two cases at expiration. Case I has the AMAT stock priceat
expiration that is consistent with the trader’s forecast for return volatility, and the call fin- G
ishes in the money. Case II has the price at expiration that is consistent with the implied =~
volatility 70 days earlier, and the call finishes out of the money. Note that in Case I, the S
delta of the option increases to 1.000 (from 0.928) while the delta plummets to zeroin =~
Case II because the call has finished out of the money. In both cases, all the shates that‘wg;; e
had been purchased as part of the option replication strategy (3240) are sold on the expi-
ration day of the call option. Now, let us use Table 19.3 to show the pmﬁtabxhty ofthe
trader’s strategy under Case [ and Case H.!1 ~ )

In Case I, the realized profit of $10,961 is very close to the expecwd proﬁt of -
$11,233. But why was the realized total loss of $22,869 different from the total profit prc
jected in Case II? The problem lies in the decision to rebalance every. sevemh day. Asthe .
option’s expiration day nears, A becomes more- volatile (I is high), pam::ular}y for
around-the-money options such as this one. It is necessary to rebalance more ftequently

.when I is high. The lesson to be learned is that the riskless hedge reqmres m@mtormg ;

and frequent adjustment. The more volatile A is, the more frcquemiy you should adjust.

~ In general, traders who delta hedge should close out - their positions early

when gamma is high. Also bear in mind that changing interest rates. will affect -

prices and deltas, and that the underlying asset can be more or less vo]anlc than cmgmaliy
believed. An option’s delta will change not only as § and T change, bu: atsoif e

RS Slmre
« Bought  Proceeds  In
Sold)  (Cost)

960 (35920)‘

1220 (114,680)
o o 88

©0 . 61310 425
- (1850) 1579
2740 ;
5100 '(47813) o
a1 15406

Case | Gt

0o 97.625 1.000 a0 i:,aki‘e,jos" r
Case Il | | b

0 80375 0,000 Guo) 260415 o
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__problem for our trader in Case IL. Moreover, the trader shoqld
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; IntrimicValues

(37500 72500

- 67,950 (36240)

’A (mdmgpnce purchasepﬂee): e 5 e TeoR o
' ',f;f‘:;lmmngamﬂOSS)fmmu'admgsﬁmes - ,3'855; (52035

i (Sumofcolunn 5, Table 19 |

faa 765)’,'
0 (5329)}, e
10961 . eusw

si23 o sugm o

- 72,500~ 126,250=~53,750. The calls expire worthless in Case Tf.

%6040 shares were initially bought at $86.375/share. Tn Case 1, thcse simes sald for 59’1 62515%13:& l L
In Case Il they are sold ata pnce of$80 37sishare. o i .

or th‘e ent!m life of the

ear the money, so that

wind early created the

her trades, and maybe
even reverse them iu the event that the option over- or undervaluattm is ever reversed. Here,
initially, the option was overvalued at $7.25. Suppose it remained overvalued until 21 days
before expiration, at which time it became undervalued. From the BSOPM, the theoretical
value of this call with 21 days to expiration, ¢ of 0.327, a riskless rate of 6%, and a stock

' price of $93.125, is $8.80 (use the FinCAD function 2aBS to verify this). Suppose the actual
call price with 21 days to expiration was $8.00 (i.e., it became undervalued). The 4

: days to exp:ra i n, the tradercmld close the position: Sﬂd reahze a pmﬁt of almes

Note that it is not aecessary to hold ento the arbitrag
option. Indeed, when an option has a short time to expi
. ganmais mgh, the arbitrage trades should be unwound.

',Pmﬁt(loss)oncailposmon .  :, (1,500)
. ‘Profit (loss) on xmual stock pesmon 40 770
. Intcnm gain (loss) from trading shares <9 980
0 Total interest income (expense) ' f o (739)

~ Financing original position “ -;{3,724)

" (Interest on $460,430 for 49 days ét 6%) k .
Reahzed total profit i $38 787
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19.4 PosiTioN DELTAS AND GAMMAS

19.4.1 Position Deltas

The position delta determines how much a portfolio changes in value if the price of the underly-
ing stock changes by a small amount. The portfolio might consist of several puts and calls on the
same stock, with different strikes and expiration dates, and also long and short positions in the
stock itself. The delta of one share of stock that is owned equals +1.0. The delta of a share of stock
that is sold short is —1.0.

Assuming that each option covers one share of stock, the position delta A is calculated as a
weighted sum of individual deltas. That is,

N

Ap = A,

i=1

where n; is the number of options of one particular type, or the number of shares of stock. The sign
of n; is positive if the options or stock is owned, and negative if the options have been written or
the stock sold short. The delta of the ith option or stock is given by A,.

Position deltas measure the change in the value of a portfolio, given a small change in the
value of the underlying stock. Knowing your portfolio’s position delta is as essential to intelligent
option trading as knowing the profit diagrams of your portfolio. For example, suppose you buy a
vertical spread using around-the-money calls. From Chapter 15, you know that you will profit if
both calls finish in the money. Both calls will be in the money if the stock price at expiration is
above the higher of the two strikes. Thus, the time T cash inflow equals the difference in the strike
prices, Ky — K;. However, the position delta for the vertical spread might only be 0.30 when the
spread is purchased. The position delta for a 11 vertical spread equals the difference in the two

579

EXAMPLE 19.3 Suppose you have positions in the following assets:

Long or Short, , S
Number . ‘ :
of Options or Shares n; Asset - Delta/Unit - - 'Total De‘ltas.zn;A{
Long 300 shares 4300 Stock 1.00 30000
Long 40 contracts +40 - . Puts ~0.46 ~18.40
Short 150 zontracts =150 = Calls 0.80 =120.00
Long 62 contracts . +62 . Calls 028 e 1?.36

: ; A= 178.96

In this example, the position delta of 178.96 is positive. Thls means that if the stock pnce‘
were to increase by one dollar, the value of this portfolio would rise by $178.96. If the

" stock price were to decline by one dollar, the value of this portfolio would fall by

$178.96. This example assumes that the underlying asset of an option is one share of,

stock.
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calis’ deltas. Thus, if the stock price were to rise or fall by one dollar immediately after purchasing
the spread, your profit or loss is only 30 cents.

A delta-neutral position is a portfolio that is immune to changes in the stock price. That is, the
portfolio of options and stock has a position delta of 0.0. However, arbitrageurs are not the only users
of delta-neutral positions. Many market makers trade options and try to maintain a deita-neutral posi-
tion. These market makers are not speculating on movements of the stock price. Instead, they can
concentrate on capitalizing on the bid-ask spread and trade what they perceive to be mispriced
options. Being delta neutral allows them to sleep at night. Delta-neutral hedging is not totally
effective, Since there is always a chance that the stock will jump unexpectedly. Recall that delta
estimates the change in the value of an option for a small change in the price of the underlying
asset. A large change in the price of the underlying asset will create a change in the value of a
delta-neutral portfolio.

Many institutions are also delta hedgers, including investment bankers and commercial
bankers, who sell nontraded (over-the-counter) options to their clients or purchase them from their
clients. For example, a customer who owns a large block of shares of a stock on which no options
trade might wish to write covered calls or buy protective puts on those shares. As another example,
consider a corporate client who anticipates the purchase (or sale) of a number of government
bonds, or some foreign exchange, in the near future. This client would like to insure that the firm
pays a price for the purchase of the asset that is no higher than some maximum tolerable amount,
or to insure that the price it will receive for the bonds or foreign exchange is no lower than some
tolerable minimum.

These are examples of customers who would like to modify the risk exposure they face in
some way. The bank can buy or sell custom-designed options to the client at a price that reflects
the current price of the underlying asset, the riskless interest rate, the strike price, the time to expi-
ration, and the estimated volatility of the underlying asset plus a profit premium. Then, the bank
will enter into a delta-neutral position by trading the underlying asset and riskless securities,
reflecting the underlying asset’s estimated volatility. As long as the estimated volatility is correct,
the bank will earn a profit by providing the service to the customer. The bank will often also be
willing to allow the customer to offset his position early, for a price, of course.

19.4.2 Position Gammas

Similar to position deltas, a position gamma I'y is the weighted sum of the gammas of the ele-
ments of the portfolio:

i=1

where n; is the number of options“of one particular type. The sign of n; is positive if the option is
owned, and negative if the option has been written. The gamma of the ith option is given by I";.
Note that the gamma of a stock is zero, because the delta of a stock is always t0 one.

Ideally, a delta-neutral hedger would like to maintain a portfolio with a positive gamma.
Recall from Sections 19.1.1 and 19.1.2 that the gamma of both a call and a put is given by the same
formula and that gammas cannot be negative. However, a portfolio can have a positive or negative
gamma. It is important to note that a portfolio with a positive gamma increases in value if the
underlying stock value changes. Further, a portfolio with a negative gamma decreases in value if
the underlying stock value changes.
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- EXAMPLE 194 Suppose §= K-$100 r-S% 0=30%, and T~ 180 days. Then, by
using the BSOPM; one can generate the followmg information, -

Variable  CallOption  Put Option  Stock

Price  $1030 . $644 $100
Delta 06151 -03849 1
Gamma 00181 - . - . 0.0181 o 0

Now, suppose a trader is considering the use of either calls or puts to maintain a delta-
neutral portfolio. This can be accomplished with the purchase of puts or by writing calls;
The impact of a positive or negative gamma can be seen by the following information,
presented on a per-share basis, :

Using Puts

Delta-neutral strategy: long 1 put at $6.44;,ldng‘ 0.3849 share at $100/share.
Positive position gamma: (1x0.0181)+ (0.3849 % 0) = 0.0181.

Stock  Put  Valueof . Portfolio  Percent Change
Price Price 0.3849 Share  Value (from S = 100)
90 - 11.25 : 34.64 45,89 ; 2.14

100 644 3849 4493 |
110 L @M a5 1s

Delta-ncutral strabegy short 1 call at $10 30 long O 6151 share at $100/share
Negative position gamma;. (—l x0. 0181) + (0. 3849 % 0) = -0.0181.

 Stock  Call  Valueof  Portfolio  Percent Change
- Price . Price ~ 0.6151Share  Value  (from S = 100)
9% 512 536 5024 -189

100 1030 6151 5121 M
110 1728 6766 5038 ~1.62

Note that when the delta hedger uses puts ta construct a portfolio, the value of the

portfolio increases, regardless of the direction of the change in the underlying asset price,
When calls are used, however the portfoho value falls whether the uuderlymg asset price
increases or decreases. : :

From a cost standpoint, a delta-neutral hedger would like to have a portfolio with a low, but
positive gamma. Recall that gamma measures changes in delta, and that deltas change as §, 7, o,
and/or r change. Thus, a portfolio that is delta-neutral today may not be delta neutral tomorrow.
A low position gamma will mean that the delta-neutral investor will conserve on the transactions
costs of readjusting his portfolio delta back to zerotif S changes. But a positive gamma at least
compensates a trader for bearing the risk of fluctuating delta, as the value of his portfolio will
increase if the underlying asset’s price changes, all else equal.
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Note that like most concepts dealing with options, delta and gamma hedging (and vega hedg-
ing discussed next) are calculus concepts that work best when there are very small changes in the
price of the underlying asset.
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19.4.4 Time Spreads

Time spreads are also sometimes called calendar spreads or horizontal spreads. Time spreads are
identified by the ratio of options written and purchased.

19.4.4.1 1:1 Time Spreads

To create a 1:1 time spread, the investor buys one option and sells one option. The two options
must be either both calls or both puts, and must share the same strike price on the same underly-
ing asset. However, unlike most of the option portfolios discussed thus far, the time spread port-
folio of options has options with different maturity dates.

Traders like to hold long positions in time spréads. A long time spread position involves
selling the option with a short time to expiration and buying the longer term option. This is
done for two reasons. First, the trader typically wishes to exploit the higher theta of the nearby
option. Options, particularly if they are at the money, will usually lose any time value af a fast
and increasing rate as the expiration date nears. At-the-money options usually have more time
value than other options, all else equal. Thus, a hypothetical at-the-money call with one month
to expiration might be sold for $2, and a call with two months to expiration might be bought
for $3. If the stock price remains unchanged, the former will expire worthless (creating a
profit of $2), and the latter (which now has one month to expiration) might be sold for $2 (cre-
ating a loss of 1). Thus, the net profit is $1. The second reason for the tendency of traders to
sell the nearby option is sold is that many empirical studies have found that options with
short lives are usually overvalued relative to options with a longer time to expiration, all else
equal.!

The maximum profit on a time spread occurs when the stock price equals the strike price on
the expiration date of the nearby call. The short-term written option expires worthless, and the

585
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longer term option can be sold with some time value remaining. An important risk to be kept in
mind is that if the written, short-term option is in the money as its expiration date nears, it could be
exercised early. To preclude this possibility, therefore, in-the-money time spreads using American
options often must be closed out early.

- EXAMPLE 19;7 Time Spread  On August 1, the foliowing are observed:
i e e g
K45
r = 11%l/year
Price of a call expiring on September 21=2
Price of a call expiring on December 21=3.375
Prepate the profit diagram for a long time spread.

Solution
On August 1 :
Sell 1 Sep 45 call +2
Buy 1 Dec 45 call -3.375
~1.375

Thus, the initial outlay for a call on 100 shases is $137.50. .

The profit table is prepared based on the closing prices of September 21. Using the
BSOPM to estimate the September 21 prices of the December call given a range of stock
prices on September 21. A volatility of ¢=40% is used because this is the implied
volatility of the September call on August 1. Finally, remember that on September 21, the

'December call will have a time to expiration of 0.25 year. :

On September 21 Time T Profit/Loss
Sy Buy Sept45call  Sell Dec45call = Cash Flow, CFr CFy+CFy
37 0 +0.893 +0.893 -0.482
38 0 +1.143 +1.143 . -0.232
39 0 +1.436 +1.436 +0.061
40 0 +1.775 - +1.775 +0.400
41 0 +2.161 +2,161 +0.786
42 0 +2.594 +2.594 +1.219
43 0 +3.074 +3.074 +1.699
44 0 +3.601 +3.601 T 42.226
45 0 +4.173 +4.173 +2.800
46 -1 +4.788 " 43,794 +2.419
47 -2

+5.450 - +3.450 +2.075
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48 ~3 +6.144 +3.144 +1.769

49 4 +6.874 o +2.874 +1.499
50 -5 +7.637 +2.637 41262
Bl ovmG s Y809 e 09 e 10580
52 = +9.248 +2.248 0873
53 -8 +10.091 +2.091 - 40.716
54 -9 410956 41956 40581 .

55  -10 +11.840 +1.840 +0‘.465; !

The profit dxagram for the long time sm‘éad appears in Figure 19.7.
The maxzmum lass 1s of $1 3‘75 is reahzed 1f the Qtock price‘ ‘tumhxet [
that both options
" sell for therr intrinsic value (S,~K) on September 21. However the ran e of stock p :
for wh;ch 2 prcrﬁt is earned is quite wide: from $39/share to : '
 The strategy described in Example 19.7 is usually called a bullish t me spread
because the stock price must rise for the maximum profit to be reached. I ;
in the money, a beansh ;  purchs

~ Figure19.7 Profit diagram for a long time spréad

19.4.4.2 Neutral Time Spreads

A neutral time spread is a strategy designed to capitalize on two options that are somehow mis-
priced relative to each other. The two options differ only in their times to expiration. As discussed
earlier, usually the short-term option is written and the longer option is purchased. The number of
each option traded is designed to create a delta-neutral portfolio.

In Example 19.7, the implied standard deviations was 0.4043 for the September call and
0.3262 for the December call. Thus, assuming that the BSOPM is the proper pricing formula, the
short-term call is overvalued relative to the December call.

Assume that the “true” volatility is 0.40/year. Then the hedge ratios of the two options are
A=0.4439 for the September call and A=0.5415 for the December call. A delta-neutral portfolio
of these two options is

A,=0=nA+mA,
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Rearranging, we have

n -4,
n A

Using these deitas, and naming the September and December calls as assets 1 and 2, respectively,
we write

n o —0.5415

—— = =-122 (19.6)
n, 0.4439

Equation (19.6) says that to create a delta-neutral position, 1.22 September calls should be
sold for each December call purchased. This allows the investor to arbitrage the relative mispric-
ing of the two options and not speculate on price movements. As time passes and as the price of the
stock changes, the deltas will change, and the relative number of options needed to maintain the
delta neutral position also will change. Thus, the position must be monitored. The investor typi-
cally rebalances the portfolio when it is necessary to buy or sell some threshold number of options
to maintain a delta-neutral position. When rebalancing, the investor should, of course, always buy
the more undervalued option, or sell the more overvalued option.

As usual, there are real risks and costs that must be included. For example, we have ignored
transactions costs. In practice, the position will have to be closed out early if the options are in the
money as September 21 nears, because the September call could be exercised early. If they are
exercised, the trader will bear additional transactions costs of having to purchase the stock and
making delivery. In addition, there are rebalancing costs of trading options to maintain delta neu-
trality. For this reason, neutral hedgers prefer low gamma positions, if possible. We assumed there
are no ex-dividend dates between August 1 and September 21. Dividends would affect the com-
puted deltas and also would introduce early exercise risk. We assumed constant interest rates and
constant volatility. These also affect the computed deltas and, indeed, may be the source of the
apparent mispricing.

19.5 Cars, FLOORS, AND COLLARS: USING OPTIONS TO
MANAGE INTEREST RATE RiISK

19.5.1 Caps

Many firms, financial institutions, and individuals borrow and/or lend money at variable interest
rates. This means that the interest rate on the loan balance changes at prespecified dates. The mag-
nitude of the change in the interest rate on the loan is typically tied to a publicly available index
such as LIBOR or a commercial paper index.

A cap is a clause or product that effectively places a maximum interest rate on a variable-rate
loan. With a cap, a borrower will pay the lesser of the rate that is pegged to the index, or the cap
rate. Sometimes caps are called ceilings. An interest rate floor effectively sets a minimum inter-
est rate on a variable-rate loan. A collar effectively sets both a maximum and a mihimum interest
rate on a variable-rate loan. Many variable-rate mortgages have collars. For example, a home
buyer might be offered a $100,000 mortgage with an interest rate of 8.5% for the first year. Each
subsequent year, a new interest rate is applied to the remaining loan balance. The new interest rate
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- EXAMPLE 19.8 Consider a notiona! principal of $8 million with'a cap of 10%. The
interest rate is reset quarterly, and interest payments are made quarterly. Suppose that on
 one of the rate-fixing dates, the underlying index (LIBOR) is 12%.

- With an annual rate of 10%, the quarterly rate is 2.50%, and the quarterly payment
~would be ($8,000,000)(0.0250) = $200,000. Instead, because the new interest rate is 12%,
the actual payment based on the quarterly market interest rate is ($8,000 ,000)(0.0300) =
240,000. If the borrower had purchased a 10% cap on a notional principal of $8 million,
e would be pzid the difference in these amounts, $40,000, by the financial institution
»that,sald him the cap. This effectively sets the maximum annual interest rate of 10%.
~ What this means is that if this call finishes 200 basis points in the money (because

;}2% is 200 basis points above the strike price of 10%), the payoff to the call owner (the
borrower) is $40, 000

might equal the prevailing rate on one-year T-bills plus 225 basis points. However the interest rate
can never exceed 12.5% (a cap), or be below 5.5% (a floor).!5

Hundreds of billions of dollars of loans in the United States have caps, floors, or collars. It is
important to note, however, that caps, floors, and collars apply only to the loan payments. In a cap,
floor, or collar, there is no default risk concerning the loan principal. However there is default risk
concerning the loan payments. The loan principal is frequently called notional principal. The
dollar payment with a cap and floor is a function of the difference between the market interest rate
and the cap/floor rate times the notional principal.

A cap can be viewed as a call option on an interest rate. Assume that a loan has an interest rate
cap of 10% (the strike price). If, on the interest rate reset date, the new interest rate is 10% or less.
the call expires worthless. However, if the new interest rate is greater than 10%, the call pays off
the difference between the new interest rate that would exist in the absence of the cap and 10%,
times the notional principal. This amount must then be adjusted for the timing of the loan repay-
ments at the new loan rate.

More generally, define:

NP =notional principal
R.=interest rate cap
R=new interest rate (determined by some interest rate index, such as LIBOR)
d=days until the next interest rate reset date

Then, a cap’s payoffs!6 on each interest rate reset date are as follows:
0 if R<R,
d
NPXR—-R,)— if R>R
(NPX e) 360 e

In Example 19.8, the cap’s payoff is ($8,000,000)(0.12—0.10)(90/360) = $40,000, because
12% > 10%.

Financial institutions scll caps to their clients. The latter are usually firms that have borrowed
money at variable interest rates and wish to insure against the possibility that at some future inter-
est rate reset date, they will have to pay more than the interest rate cap.
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Because most cap agreements have a series of interest rate reset dates, a cap.is actually a scries,
or portfolio, of call options, each expiring on a reset date. The term caplet refers to any one of the
options making up a cap.

19.5.2 Floors .

An interest rate floor is a put option on an interest rate. Floors represent insurance for the lending
institution that it will never receive less than the floor interest rate on a variable loan rate that it has
made. If the new interest rate is above the strike (the floor), the put expires worthless. If the mar-
ket interest rate (e.g.,three month LIBOR) is below the interest rate floor (the strike price), the put
pays off to the lender. Borrowers sell floor agreements to lenders, and borrowers must make pay-
ments to the lending institution if interest rates decline below the floor rate.

Define the following:

NP =notional principal

R, =interest rate floor
R=new interest rate (determined by some interest rate index, such as LIBOR)
d=days until the next interest rate reset date

Then, a flcor’s payoffs on each interest rate reset date are as follows

0 ifR2 R,
NP(R; - R)%é; ifR<R,

19.5.3 Collars

An interest rate collar combines a cap and a floor. Equivalently, the lending institution sells an
interest rate call to the borrower and buys an interest rate floor from the borrower. A collar’s pay-
offs on each interest rate reset date are as follows:

NP (R—-R f);‘%o if R<R; (borrower pays lender)
0 ifR; <R<R.
NP(R - RC)-;;—O ifR>R, (lender pays borrower)

The profit diagram for a collar from the lender’s viewpoint (Fi ure 19.8a) shows thatif R< Ry
the lender profits because he owns an interest rate put. If R > R, the lender loses because he has
sold an interest rate call. In Figure 19.8b, the profit diagram for a collar from the borrower’s view-
point, the borrower benefits from owning a cap (an interest rate call) if R > R,. The borrower loses
if interest rates decline below the floor rate.

Figure 19.9 shows that a collar effectively sets a minimum and a maximum interest rate-for a
variable-rate borrower who has also purchased a collar.

Typically, caps, floors, and collars are out of the moncy when they are originated. By choosing
the cap and floor rates appropriately, the ler.der can create what is known as a “zero-cost collar.”
That is, the value of the call sold by the lender equals the value of the put the lender purchases. 17
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(a) Profit
Long Put
$0
R Re Rate
Short Call
Loss
(b) Profit
Long Call
$0
R Re Rate
Short Put
Loss

Figure 19.8 (a) A collar’s payoff profile to the lender, where “Rate” is the interest rate on the reset date and
Ryand R, are the interest rate floor and cap, respectively. (b) A collar’s payoff profile to the borrower.

Effective
Interest
Rate on
Loan
RC T
RF T
i |
RIF RIC Market Interest
Rate, R

Figure 19.9 A borrower who has borrowed at a variable interest rate and has also bought a collar will never
pay an interest rate below the floor rate or above the cap rate.

19.5.4 Valuing Caps, Floors, and Collars

There is a secondary, OTC, market for caps, floors, and collars. Generally, these products trade in
multiples of $5 million notional principal, with maturities ranging from three months to 10 or
more years. While the traded caps, floors, and collars usually have interest rates based on three-
month LIBOR, they can have monthly, quarterly, or semiannual reset dates. Because financial
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institutions trade these products to adjust their net risk exposure, it is important to be able to value
these products.'8

Consider the following information. Suppose a two-year variable-rate loan in the amount of
$10 million exists with reset dates on March 31, June 30, Septe__rgbe)g 30, and December 31. The
reset rate is LIBOR. Let today be March 1, 2001. Define (0, ¢) as spot LIBOR from March 1, 2001
(day 0) until time ¢. Define r(t1, 12) as the forward LIBOR from time 1 until time 2. This forward
interest rate might be inferred from Eurodollar futures prices, or from current spot Eurodollar
rates. Assume that the volatility of forward Eurodollar interest rates is 20%/year.

Recall that a cap, floor, or collar is a portfolio of options that expire on different reset dates.
Thus, to value a cap, floor, or collar, an interest rate option pricing model is used to value each
option that expires on each interest rate reset date. Although the more complex Heath, Jarrow, and
Morton (1992) model yields more precise option prices, a common practice is to use a version of
Black’s (1976) forward option pricing model. Thus, to value a caplet or floorlet, use

caplet value = C = (NP)(t, — ;)¢ [FN(d,) — KN(d, )] (19.7)
floorlet value = P = (NP)(t, —t) e’ [KN(-d,)— FN(-d))] (19.8)

where

t,= the period of time until the start of the forward period = the time to expiration of the caplet,
in years = the time until the loan reset date

:=end of the forward period
t,—t;= length of the forward period
r= (0, t,) = the spot interest rate for the period ending at time 72
F'=r(t),1,); thus F, the forward interest rate, is the underlying asset
K = cap or floor interest rate
o = standard deviation of the percentage changes in the forward interest rate
d,= [In(F/K)/o t,'*1+0.56 1,'*
dy=dy~ot,"?

Equations (19.7) and (19.8) take the values of Black’s forward option pricing model and mul-
tiply them by the notional principal times the length of the forward period. The payment on the
caplet is made at time ¢,.

Table 19.4 presents a valuation example for caplets and floorlets. For times to expiration of
less than one year, the riskless interest rate is approximately the T-bill bond equivalent yield. For
expirations of more than one year, the riskless interest rate is approximated by the yield on a zero-
coupon, or stripped, T-note (or T-bond). The forward rates are approximately equal to Eurodollar
futures add-on yields and are presented as percentages. The latter represent F, the underlying
asset, in Black’s model. The notional principal is $10 million. Today is March 1, 2001. The strike
price for the cap, R,, is 10%. The strike price for the floor, Ry, is 5%. The volatility of each under-
lying asset (each caplet has its own unique forward rate; each could have a different volatility) is
20%. Each caplet and floorlet value is given in dollars.!?

The value of the cap equals the sum of the eight call values (the individual caplets), or
$4,314.23. By summing the values of the eight floorlets, you obtain the floor value of $7930.66. In
a collar, the lender sells the cap and buys the floor, so the cost of the collar to the buyer is $3,616.42.
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TABLE 19.4 Valuation of Caplets and Floorlets

Loan Time to

Reset Expiration, Cap Value Floor Value
Date in Years r(0,t,) r(ty, t3) forR.=10% for Rr =5%
03/31/01 0.08219 0.055 6.2321 0.0000 0.0608
06/30/01 0.33151 0.062 6.2825 0.1341 139.1975
09/30/01 0.58356 0.063 6.4735 19.0599 387.8555
12/31,/01 0.83562 0.064 6.6701 160.1481 594.3566
03/31/92 1.08219 0.065 6.8567 540.2025 779.6977
06/30/02 1.33151 0.066 6.4431 456.8923 2036.8952
09/30/02 1.58356 0.066 7.1376 1970.4166 1184.0161
12/31/02 1.83562 0.067 6.5372 1167.3808 2808.5782
03/31/03 2.08219 0.067

Sum: $4314.2343 $7930.6576

If the borrower wanted a zero-cost collar with a cap of 10%, then the lending institution
would search for the interest rate floor that had a value of $4,314.23, the same as the cap.?

Financial CAD can be used to solve for the value of a cap or floor. Before we do that, however,
it is useful to first use aaConverR_DFecrv to convert the series of spot interest rates into a series of
discount factors. This is shown in Figure 19.10. Then, in Figure 19.11, we use these discount fac-
tors and the function aaRatefwd_crv to compute the forward rates that exist in the spot yield curve.
These are the same forward rates shown in Table 19.4.

We use the FinancialCAD function aaRcapBL_fs statv to solve for the value of a cap or floor,
as shown in Figure 19.12. Note that the discount factors produced by aaConvertR_DFcrv (Figure
19.10) are used as in input in Figure 19.12. Other functions, such as aaRcap_BL,_dgen and aaRcap_BL
can also be used to value caps and floors.

There is a small difference between the total dollar value of the cap that is computed by
Financial CAD in Figure 19.12, $4330.66, and the cap value of $4314.23 generated in Table 19.4.
The difference arises because Financial CAD does not discount by e”2 like we do in equations 19.7
and 19.8. Click on Financial CAD’s “Show Math” button in its function finder for Rate Caps and
Floors to learn how they discount.

19.6 SuMMARY

In this chapter, we focus on the details of how options provide insurance and some necessary tech-
nical details concerning how option prices change as the factors that influence option prices
change.

The BSOPM can be differentiated with respect to each of its five parameters, K, 7, r, 0, and
S. In addition, the second derivative of the BSOPM with respect to S is quité useful. The results are
useful formulas that predict how much an option value will change if only one input parameter
changes by a small amount, and all other inputs are held constant.

A particularly important sensitivity is known as delta. Delta is also called an option hedge
ratio. Delta measures the amount by which the option value changes, given a small change in the
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aaConvertR DFcrv

1-Mar-2001

annual compounding

t.48_4
rate curve

maturity date yield to maturity

31-Mar-2001 0.055
30-Jun-2001 0.062
30-Sep-2001 0.063
31-Dec-2001 0.064
31-Mar-2002 0.065
30-Jun-2002 0.066
30-Sep-2002 0.066
31-Dec-2002 0.067
31-Mar-2003 0.067

discount factor curve - aaConvertR_DFcrv
grid date - discount factor

1-Mar-2001

1

31-Mar-2001

0.995609058

30-Jun-2001

0.980256078

30-Sep-2001

0.964975317

31-Dec-2001

0.949482868

31-Mar-2002

0.934119588

30-Jun-2002

0.918419491

30-Sep-2002

0.903742602

31-Dec-2002

0.887770948

31-Mar-2003

0.873687812

#N/A #N/A

Figure 19.10 The financial CAD function aaConvertR_DFcrv converts a series of spot interest rates into a
series of discount factors.

value of the underlying asset and holding everything else equal. Delta and gamma, the rate at
which delta changes, are important factors to consider when one is managing risk.

Portfolios consisting of the underlying asset and options also have deltas and gammas. These
are commonly called position deltas and position gammas. We provide an example of how risk
managers can immunize their portfolios against delta and gamma effects.

We also provide a discussion on time spreads. Time spreads are portfolios of options that do
not have the same time to expiration. We present an example of how such a portfolio can be delta
hedged.

Because many firms, institutions, and individuals borrow at variable interest rates, we discuss
the use of options to manage interest rate risk. In particular, we show how a borrower can ensure
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aaRatefwd crv

t7
date list
effective and terminating date pairs
31-Mar-2001
30-Jun-2001
30-Sep-2001
31-Dec-2001
31-Mar-2002
30-Jun-2002
30-Sep-2002
31-Dec-2002
31-Mar-2003
t_43_1
discount factor curve
grid date discount factor
1-Mar-2001 1

31-Mar-2001| 0.995609058
30-Jun-2001| 0.980256078
30-Sep-2001| 0.964975317
31-Dec-2001] 0.949482868
31-Mar-2002{ 0.934119588
30-Jun-2002| 0.918419491
30-Sep-2002| 0.903742602
31-Dec-2002| 0.887770948
31-Mar-2003| 0.873687812

forward rate list given date list and discount factors — aaRatefwd_crv
forward rate

0.062820965
0.062825192
0.064734825
0.066700917
0.068566618
0.064430912
0.071376297
0.065372252

Figure 19.11 The financial CAD function aaRatefwd_crv, converts a series of discount factors (based on
spot interest rates), into forward rates.

that he will never pay a variable interest rate above a set level, known as a cap. In addition, we show
how a lender can ensure that he will never receive less on a variable rate loan than predetermined
amount, known as a floor. Finally, we present an example of how to calculate the value of a cap and
a floor.
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1-Mar-2001F

t.3
rate cap payment table - using volatility
effective date terminating date notional principal amount exercise implied
rate volatility
31-Mar-2001 30-Jun-2001 10.000,000.00 0.1 0.2
30-Jun-2001 30-Sep-2001 10,000,000.00 0.1 0.2
30-Sep-2001 31-Dec-2001 10,000,000.00 0.1 0.2
31-Dec-2001 31-Mar-2002 10.000,000.00 0.1 0.2
 w31-Mar-2002 30-Jun-2002 10,000.000.00 0.1 0.2
a7 B80-Jun-2002 30-Sep-2002 10,000,000.00 0.1 0.2
30-Sep-2002 31-Dec-2002 10,000,000.00 0.1 0.2
31-Dec-2002 31-Mar-2003 10,000,000.00 0.1 0.2
t.43_1
discount factor curve
grid date discount iactor
1-Mar-2001 1
31-Mar-2001; 0.995609058
30-Jun-2001| 0.980256078
30-Sep-2001] 0.964975317
31-Dec-2001| 0.949482868
31-Mar-2002 0.934119_5@
30-Jun-2002| 0.918419491
30-Sep-2002! 0.903742602
31-Dec-2002! 0.887770948
31-Mar-2003| 0.873687812
#N/A #N/A
rate cap table - Black '76 - aaRcapBL _fs_statv
effective date terminating date notional principal amount exercise implied fair value delta gamma
rate volatility
1-Mar-2001 30-Jun-2001 10,000,000.00 0.1 0.2 -3.13037
30-Jun-2001;  30-Sep-2001 10.000,000.00 0.1 0.2 0.1342736
30-Sep-2001 31-Dec-2001 10,000,000.00 0.1 0.21 19,09
-Dec-2001 31-Mar-2002 10.000,000.00 0.1 0.2 :
31-Mar-2002 30-Jun-2002 10,000.000.00 0.1 0.2] 541.70
30-Jun-2002 30-Sep-2002 10,000,000.00 0.1 0.2] 4584 84
30-Sep-2002 31-Dec-20602 10,000,000.00 0.1 0.2] 1978.2048 X 0.23784
1-Dec-2002 31-Mar-2003| 10,000,000.00 0.1 02| 1172.6161371 16.35053[0.173722
4330.655993

Figure 19.12 The financial CAD function aaRcapBL_fs_statv, solves for the value of a cap or floor.
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Notes

LOf course, tax, accounting, and legal factors may all affect the risk manager’s decision to use options, futures, for-
wards, or swaps.

ZRecall that in a continuous hedging strategy, the risk nanager will always hedge, regardless of her beliefs or of
price forecasts. In contrast, a selective hedging strategy will allow the risk manager to hedge only when she expects
prices to move adversely.

3In addition, the second derivative of the BSOPM with respect to S is quite useful.

“Note that the partial derivative with respect to the strike price has no Greek name. This is most likely because the
strike price of the option is not stochastic. For details on the derivations of these formulas, see Galai and Masulis
(1976) and Conine and Tamarkin (1984).

5By convention, theta is frequently defined as the negative of 9C/9T.

6See the discussion of theta in Chapter 14 for some intuition concerning this result.

"It is assumed that you can sell short the stock costlessly and receive full use of the proceeds. Also, note that under
the assumptions of the BSOPM, A can asymptotically approach 0.0 and 1.0 but can never exactly equal those
values. The tails of a normal curve stretch out to infinity, so that N(d,) can never exactly equal 0.0 or 1.0.

8The principles of call replication using the binomial option pricing model appear in Chapter 17.

9The seeds ot this example stem from material presented in Natenberg (1994, Chapter 5).

10Note that the choice to present the data every week is arbitrary. In practice, investors monitor A daily, or even intra
daily, and adjust their positions when their investment in the underlying asset is sufficiently different from the A that
is prescribed by their option pricing model.
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URecall that there are many different possible paths through which the stock price can wander before option expi-
ration. Vastly different results for such an example can be obtained depending on the interim volatility of the stock
price {i.2 the volatility over the first nine weeks). You are encouraged to prepare a spreadsheet and experiment. One
interesting aspect is that if the volatility over the first nine weeks is lower than the trader’s forecast, it is possible to
obtain a result closer to the projected profit than if the volatility over the first nine weeks is higher than the trader’s
forecast for subsequent return volatility.

12The reader should note that this logic applies to a wide variety of derivative securities (such as forwards, futures,
and options on futures, as well as options on the underlying asset) and to the underlying asset.

BHowever, it is important to note that the portfolio value of a delta—gamma hedge can still change if the riskless
interest rate changes, as time passes, and/or if volatility changes. Note that equation 19.4 can be derived by apply-
ing It6’s lemma to C=C(S,t) where the underlying price, S, is assumed to follow an It process. Then,

oC .. 9C . 193°C

dC = —dS+=—dt + —Z=(dS)*
ES FTRAFETEA

2
which is (19.4), when the ‘greeks’ are substituted for aC 35S oC 3t and a_g .

4R ubinstein (1985) employs actual transaction data and bid-asked spreads, accounts for dividends and early exer-
cise, and considers several different option pricing models in his tests of option market efficiency. He finds that
implied volatilities for out-of-the-money calls grow significantly higher, the shorter the time to expiration. He also
finds that the market began to overprice at the money calls with a short time to expiration in his later subperiod,
October 1977-September 1978. The empirical phenomenon may be explained in one of two ways: (a) all our option
pricing models are incorrect, or (b) investors like to play “long shots” that offer a small chance of a large percentage
payoff, and their purchase of options that offer this feature results in higher prices for these options.

15 Another common clause is that the yearly adjustment can never exceed a preset amount. For example, while a
variable-rate mortgage might specify a cap of 12.5% and a floor of 5.5%, it might also restrict the yearly change in
the interest rate to be no more than 200 basis points. From Example 19.8, this would mean that one year after the
loan is originated, the new interest rate could range between 6.5 and 10.5%.

16The payoft to the cap or floor is often negotiated to be discounted [i.e., the present value of NP(R— R_)(d/360)].
"n foreign exchange transactions, a zero-cost collar is called a range forward.

BIngtead of trading caps, floors, and collars, financial institutions could insure the risk of their net interest rate
exposure by using Eurodollar futures options, or by using Eurodollar futures contracts and dynamic hedging meth-
ods (i.e., delta hedging to dynamically create an option).

19By convention, the forward rate in a cap, r{t;#,), is computed using {1+ r(0,2,)1 =[1+r(0,1,)]"[1 + r(t), 1)t — 1)1,
The forward rates are then said to be computed on a “money market basis”.You are encouraged to use Equation
(19.7) to verify the cap values, and Equation (19.8) to verify the floor values.

20For more details on caps, floors, and collars, see Brown and Smith (1988), Abken (1989), Boyle and Turnbull
(1989), and Stapleton and Subrahmanyam (1990).

PROBLEMS

19.1 Toastcoil is a firm in an enviable posi-
tion. It has a monopoly in the United States. in
the business of manufacturing heating ele-
ments that are put into toasters. No other firm
in the country manufactures these elements.
While other firms in Europe and Japan make

the products, they do not export to the United
States. Toastcoil does not export its product
and none of its raw materials are imported. On
the surface, Toastcoil faces no currency risk. It
has no revenues, expenses, assets, or liabilities
that are based on any foreign currency.
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But this is an erroneous view of Toastcoil’s
position. If the ¥/$ exchange rate rises,
then Japanese manufacturers may find it
profitable to enter the U.S. market. If any
Eurocurrency price of the dollar rises, Euro-
pean manufacturers may decide to export their
products to the United. States. Therefore,
Toastcoil does indeed face foreign exchange
risk. If the dollar rises in value, the firm’s prof-
itable monopoly position may erode from for-
eign competitors.

How can Toastcoil use options to protect
itself against this exchange rate risk?

19.2 In the winter of 1997, several Asian cur-
rencies dropped drastically in value against the
U.S. dollar. Several currencies, including the
Indonesian rupiah, fell by more than 50% in
value.

a. One small Indonesian firm had in an
earlier year borrowed $800. million
because U.S. interest rates were lower
than Indonesian interest rates. Then, in
July, this firm used foreign currency
options to hedge part of its dollar-
denominated debt. Explain how the
firm could use options for this purpose.

b. If the $/rupiah exchange rate began to
decline, how would the Indonesian
firm maintain its hedge?

193 You are given the following information:
$=93
K=100
T=0.25 year
r=7.5%lyear
0=0.75/year
No dividends

a. Use the BSOPM to calculate the put
and call prices. Use FinCAD and
put—call parity to verify your answer.

b. Use the formulas in Section 19.1.1 to
calculate values for delta, gamma,
vega, rho, and theta for calls and puts.
Use FinCAD to verify your answers.

194 Consider a call option with a strike
price of K = 90, and 70 days until expiration.
The price of the underlying asset is 86.375,
and the volatility of the underlying asset is
32.7%. The riskless interest rate is 6%. The
actual market price of the option is 3. You
might refer to Section 19.3 to answer the fol-
lowing questions.

a. Explain what trades you would make
to arbitrage this mispriced option,
assuming that your estimate of volatil-
ity, 32.7%, is correct.

b. Suppose that the subsequent weekly
prices of the underlying asset are those
shown in Table 19.1. Dynamically
maintain your arbitrage. Create a table
similar to Table 19.2, and use the Case
I price for the stock price at expiration
(S7 = 97.625). What is the actual arbi-
trage profit, and how does it compare
to the arbitrage profit you expected?

19.5 Suppose you have positions in the fol-
lowing assets:

Long or Short,

Number

of Options or Shares Delta/Unit
Short 1,300 shares 1.00
Long 400 puts -0.46
Short 150 calls 0.80
Long 72 calls 0.28

Calculate the position delta. Explain what will
happen to the value of the portfolio if the stock
price increases by $1.

19.6 An options trader has several long and
short positions in many puts and calls on a
given stock. The computed position delta of
the portfolio is —12,456. Each option is on one
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share of stock. How many shares of stock
should be bought or sold in order to be delta
neutral?

19.7 Suppose you bought 100 undervalued
puts with a A (that reflects your estimated
volatility) of —0.30. You wish to create a delta-
neutral position by using in-the-money puts that
are correctly valued (or overvalued) and have a
A of —0.85. How miany of the latter should you
trade, and should they be bought or sold?

19.8 An options market maker has the fol-
lowing positions in options:

Long or Short Option
Number of Options Put/Call Delta
Long 20 Calls 0.2
Long 48 Calls 0.6
Short 16 Calls 0.82
Long 120 Puts -0.12
Short 30 Puts -0.51

a. What is his position delta? How can
we use trades in the underlying shares,
to go home delta neutral?

b. Suppose instead that he anticipates a
weak opening in this stock and wants
to have a position delta of —0.50
overnight. How many shares of stock
should he buy or sell to achieve this?

19.9 An investor wishes to enter into a delta-
neutral position with two options that, given
the current price of the underlying asset, have
the following prices and deltas:

Option Price Delta
A 14 ~0.4300
B 14 +0.3300

a. Suppose an investor writes eight con-
tracts of option A. To be delta neutral,
how many contracts of option B should
be traded? Should they be bought or
sold?

b. The investor estimates that if the price
of the underlying asset increased by
one dollar, the delta of option A would
become —-0.4200, and the delta of
option B would become 0.3340. Using
this information, estimate the position
gamma for the delta-neutral position
you formed in part a.

c. If the underlying asset does increase in
value by $1, and the investor wishes to
reestablish the delta-neutral position
using the underlying asset, how many
shares must he buy or sell?

19.10 Suppose S=K;=3%90, r=6%, 6 =50%,
T=90 days, and K,=110. Then, by using the
BSOPM or the FinCAD function aaBS, fill in
the following table:

Call Option
Variable K=90 K=110 Stock
Price
Delta
Gamma

a. Suppose an investor writes 400 of the
90 calls. What positions does he need
in the stock and the 110 calls to be
delta—gamma neutral?

b. Instead, suppose the investor buys 250
of the 90 calls. What positions does he
need in the stock and the 110 calls to
be delta—gamma neutral?

19.11 [n Section 19.4.4.2, our computations
yielded 1.22 as the initial ratio of calls written
per call purchased needed to create a delta-
neutral position. If the stock price remained
unchanged, what will happen to that ratio as
the expiration date nears? Provide an intuitive
answer (i.e., do not compute new deltas). If
the stock price were to rise immediately after
entering the neutral spread, what would hap-
pen to that ratio? Again, do not compute new
deltas. Provide an intuitive answer.
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19.12 Consider the following information.
Suppose an 18-month variable-rate loan exists
with reset dates on March 31, June 30,
September 30, and December 31. The reset
rate is LIBOR. Let today be February 1, 2001.
The notional principal is $25 million. The
volatiiity of interes* rates is 15%.

Time Cap Floor
to Value Value
Loan Expi- for for
Reset ration R.= Rg=
Date (years) r(0,£1) r(t1,12) 8% 3%
03/31/01 0.035
05/30/01 0.042
09/30/01 0.048
12/31/01 0.053
03/31/02 0.055
06/30/02 0.057

09/30/02 0.058

Calculate the dollar value of the cap
and the floor. Use the FinCAD function
aaRcapBL._fs_statv to check your solution.

19.13 Use the FinCAD function aaPcap
BL_fs_statv to compute the theoretical value
of the 5% floor in the examplc shown in
Section 19.5.4.
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